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Course overview
Using the idea of definite integral developed in previous semester,
the natural logarithm function is defined and its properties are
examined. This allows us to define its inverse function namely
the natural exponential function and also the general exponential
function. Exponential functions model a wide variety of phe-
nomenon of interest in science, engineering, mathematics and
economics. They arise naturally when we model the growth of
a biological population, the spread of a disease, the radioactive
decay of atoms, and the study of heat transfer problems and so
on. We also consider certain combinations of exponential func-
tions namely hyperbolic functions that also arise very frequently
in applications such as the study of shapes of cables hanging un-
der their own weight. After this, the students are introduced to the
idea of improper integrals, their convergence and evaluation. This
enables to study a related notion of convergence of a series, which
is practically done by applying several different tests such as in-
tegral test, comparison test and so on. As a special case, a study
on power series- their region of convergence, differentiation and
integration etc.,- is also done. A detailed study of plane and space
curves is then taken up. The students get the idea of parametriza-
tion of curves, they learn how to calculate the arc length, curva-
ture etc. using parametrization and also the area of surface of
revolution of a parametrized plane curve. Students are introduced
into other coordinate systems which often simplify the equation
of curves and surfaces and the relationship between various co-
ordinate systems are also taught. This enables them to directly



calculate the arc length and surface areas of revolution of a curve
whose equation is in polar form. At the end of the course, the stu-
dents will be able to handle vectors in dealing with the problems
involving geometry of lines, curves, planes and surfaces in space
and have acquired the ability to sketch curves in plane and space
given in vector valued form.



Module 1

The Transcendental
functions

1.1 The natural logarithmic function

Definition 1. The natural logarithmic function, denoted by ln, is

the function defined by

lnx =

∫ x

1

1

t
dt

for all x > 0.

Definition 2. (Derivative of lnx) Using Fundamental theorem of

Calculus, we get that

d

dx
lnx =

d

dx

∫ x

1

1

t
dt =

1

x
x > 0

Laws of logarithms : Let x and y be positive numbers and let r
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be a rational. Then
a. lnx = 0

b. lnxy = lnx+ lny

c. lnx
y

= lnx− lny
d. lnxr = rlnx

Example : Expand the expression lnx
2+1√
x

.
Solution :

x2 + 1√
x

=
x2 + 1

x1/2

= ln(x2 + 1)− ln(x1/2)

= ln(x2 + 1)− 1

2
lnx

Graph of the natural logarithmic function : f(x) = lnx has
the following properties:
1. The domain of f is (0,∞), by definition.
2. f is continuous on (0,∞), since it is differentiable there.
3. f is increasing on (0,∞), since f ′(x) = 1

x
> 0 on (0,∞).

4. The graph of f is concave downward on (0,∞) since f ′′(x) =

− 1
x2
< 0 on (0,∞).

Using these properties and the results limx→0+ lnx = −∞ and
limx→ infty lnx =∞
we sketch the graph of f(x) = lnx, as shown below.

2



Theorem 1. (Derivative of the Natural logarithmic function) Let

u be a differential function of x. then

a. d
dx
ln|x| = 1

x
x 6= 0

b. d
dx
ln|u| = 1

u
.du
dx
u 6= 0

Proof. a. If x > 0, then as we have have already seen earlier

d

dx
ln|x| = d

dx
lnx =

1

x

If x < 0, then |x| = −x. So we have

d

dx
ln|x| = d

dx
ln(−x) =

1

x

b. This follows from the Chain Rule.

Example : Find the derivative of
a. f(x) = ln(2x2 + 1) b. g(x) = x2ln2x

Solution :
a. f ′(x) = d

dx
f(x) = ln(2x2 + 1) = 1

2x2+1
d
dx

(2x2 + 1) = 4x
2x2+1

b.

g′(x) =
d

dx
(x2ln2x) = x2 d

dx
(ln2x) + (ln2x)

d

dx
(x2)

= x2(
1

2x
)(2) + (ln2x)(2x) = x(1 + 2ln2x)

Logarithmic Differentiation : We have seen how the laws of
logarithms can help to simplify the work involved in differenti-
ating logarithmic expressions.We now look at a procedure that
takes advantage of these same laws to help us differentiate func-
tions that at first blush do not necessarily involve logarithms. This
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method, called logarithmic differentiation, is especially useful for
differentiating functions involving products, quotients, and/or pow-
ers that can be simplified by using logarithms.

Steps to finding dy
dx

by Logarithmic Differentiation : Suppose
that we are given the equation y = f(x) . To compute dy

dx
:

1. Take the logarithm of both sides of the equation, and use the
laws of logarithms to simplify the resulting equation.
2. Differentiate implicitly with respect to x.
3. Solve the equation found in Step 2 for dy

dx
.

4. Substitute for y.

Example : Find the derivative of y = (2x−1)3√
3x+1

.
Solution : We begin by taking the natural logarithm on both sides
of the equation,

lny = ln
(2x− 1)3

√
3x+ 1

or
lny = 3ln(2x− 1)− 1

2
ln(3x+ 1)

Now diferentiating with respect to x

1

y
(y′) =

3

2x− 1
(2)− 1

2(3x+ 1)
(3)

=
6

2x− 1
− 3

2(3x+ 1)

=
6.2(3x+ 1)− 3(2x− 1)

2(2x− 1)(3x+ 1)

4



This gives,

y′ =
6.2(3x+ 1)− 3(2x− 1)

2(2x− 1)(3x+ 1)
.y

=
6.2(3x+ 1)− 3(2x− 1)

2(2x− 1)(3x+ 1)
.
(2x− 1)3

√
3x+ 1

=
15(2x+ 1)(2x− 1)2

2(3x+ 1)3/2

Integration involving Logarithmic functions : By reversing the
rule

d

dx
ln|u| = 1

u

du

dx

we obtain the following rule of integration.

Theorem 2. (Rule for integrating 1
u

) Let u = g(x) , where g is

differentiable, and suppose that g(x) 6= 0. Then∫
1

u
du = ln|u|+ C

Example : Evaluate the following
a.
∫

1
2x+1

dx

b.
∫
tanxdx

c.
∫
sexxdx

Solution : a. Let u = 2x + 1, so that du = 2dx or dx = 1
2
du.

Making these substitutions, we get∫
1

2x+ 1
dx =

1

2

∫
1

u
du =

1

2

∫
ln|u|+ C

=
1

2
ln|2x+ 1|+ C

5



b. Since tanx = sinx
cosx

, we use the substitution u = cosx, so that
du = −sinxdx = or sinxdx = −du. This gives∫

tanxdx =

∫
sinx

cosx
dx = −

∫
1

u
du

= −ln|u|+ C = −ln|cosx|+ C

= ln|secx|+ C

c. Multiplying both the numerator and denominator of the inte-
grand by secx+ tanx gives∫

secxdx =

∫
secx

secx+ tanx

secx+ tanx
dx =

∫
sec2x+ secx.tanx

secx+ tanx

Now, we use the substitution u = secx + tanx, so that we get
du = (secx.tanx+ sec2x)dx. This gives,∫

secxdx =

∫
1

u
du = ln|u|+ C = ln|secx+ tanx|+ C

We can use the above technique to find the integral of other
trigonometric functions, the results of which are summarized be-
low.

Theorem 3. ( Integrals of Trigonometric Functions)

a.
∫
tanudu = ln|secu|+ C

b.
∫
cotudu = ln|sinu|+ C

c.
∫
secudu = ln|secu+ tanu|+ C

d.
∫
cscudu = ln|cscu− cotu|+ C

Example : Find
∫
xsexx2dx.

Solution : Let u = x2, so that du = 2xdx or xdx = 1
2
du. Making
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these substitutions, we obtain∫
xsexx2dx =

1

2

∫
secudu

=
1

2
ln|secu+ tanu|+ C

=
1

2
ln|secx2 + tanx2|+ C

Theorem 4. a. limx→∞ lnx =∞
b. limx→0+ lnx = −∞

Proof. a. By Law of logarithms, we have ln2n = nln2 for any
positive integer n. Since ln2 > 0, we see that ln2n → ∞ as
n→∞. But lnx is an increasing function, so

lim
x→∞

lnx =∞

b. Let t = 1
x
. Then t→∞ as x→ 0+. Therefore, using part (a),

we have

lim
x→0+

lnx = lim
t→∞

ln(
1

t
) = lim

t→∞
(−lnt) =∞

1.2 Inverse Functions

A function that undoes, or inverts, the effect of a function f is
called the inverse of f . Many common functions, though not all,
are paired with an inverse. Important inverse functions often show
up in applications. Inverse functions also play a key role in the
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development and properties of the exponential functions. To have
an inverse, a function must possess a special property over its
domain.

Definition 3. A function f(x) is one-to-one on a domain D if

f(x1) 6= f(x2) whenever x1 6= x2 in D.

Examples :

1. f(x) =
√
x is one-to-one on any domain of non negative num-

bers because
√
x1 6=

√
x2 whenever x1 6= x2.

2. g(x) = sin(x) is not one-to-one on the interval [0, π] because
sin(π/6) = sin(5π/6). In fact, for each element x1 in the sub
interval [0, π/2) there is a corresponding element x2 in the sub
interval (π/2, π] satisfying sin(x1) = sin(x2). The sine function
is one-to-one on [0, π/2] , however, because it is an increasing
function on [0, π/2] and therefore gives distinct outputs for dis-
tinct inputs in that interval.

The Horizontal Line Test for One-to-One Functions : A func-

tion y = f(x) is one-to-one if and only if its graph intersects each

horizontal line at most once.
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Definition 4. Suppose that f is a one-to-one function on a domain

D with range R. The inverse function f−1 is defined by f−1(b) =

a if f(a) = b. The domain of f−1 is R and the range of f−1 is D.

Example : Suppose a one-to-one function y = f(x) is given by a
table of values

x 1 2 3 4 5 6 7 8

f(x) 3 4.5 7 10.5 15 20.5 27 34.5

Solution : Then the table of values of x = f−1(y) is as given
below

y 3 4.5 7 10.5 15 20.5 27 34.5

f−1(y) 1 2 3 4 5 6 7 8

9



Composing a function and its inverse has the same effect as
doing nothing i.e
(f−1 ◦ f)(x) = x, for all x in the domain of f
(f ◦ f−1)(y) = y, for all y in the domain of f−1 (or range of f ).
Keep in mind that only a one-to-one function can have an inverse.
The reason is that if f(x1) = y and f(x2) = y for two distinct
inputs x1 and x2 , then there is no way to assign a value to f−1(y)

that satisfies both f−1(f(x1)) = x1 and f−1(f(x2)) = x2. A
function that is increasing on an interval satisfies the inequality
f(x2) > f(x1) when x2 > x1, so it is one-to-one and has an
inverse. A function that is decreasing on an interval also has an
inverse. Functions that are neither increasing nor decreasing may
still be one- to-one and have an inverse. An example is the func-
tion f(x) = 1/x for x 6= 0 and f(0) = 0, defined on (−∞,∞)

and passing the horizontal line test.

Finding the Inverse :

We want to set up the graph of f−1 so that its input values lie
along the x-axis, as is usually done for functions, rather than on
the y-axis. To achieve this we interchange the x- and y-axes by
reflecting across the 45 degree line y = x. After this reflection
we have a new graph that represents f−1. The value of f−1(x)

can now be read from the graph in the usual way, by starting with
a point x on the x-axis, going vertically to the graph, and then
horizontally to the y-axis to get the value of f−1(x).
The process of passing from f to f−1 can be summarized as a
two-step procedure.

10



1. Solve the equation y = f(x) for x. This gives a formula
x = f−1(y) where x is expressed as a function of y.
2. Interchange x and y, obtaining a formula y = f−1(x) where
f−1 is expressed in the conventional format with x as the inde-
pendent variable and y as the dependent variable.

Example : Find the inverse of y = 1
2
x + 1, expressed as a func-

tion of x.
Solution : 1. Solve for x in terms of y:
y = 1

2
x+ 1

2y = x+ 2

x = 2y − 2.
2. Interchange x and y: y = 2x− 2.

The inverse function of f is f−1(x) = 2x− 2.

Theorem 5. (The Derivative Rule for Inverses) If f has an inter-

val I as domain and f ′(x) exists and is never zero on I , then f−1

is differentiable at every point in its domain (the range of f ). The

value of (f−1)′ at a point b in the domain of f−1 is the reciprocal

of the value of f ′ at the point a = f−1(b):

(f−1)′(b) =
1

f ′(f−1(b))

or
df−1

dx
|x=b =

1
df
dx
|x=f−1(b)

Theorem 1 makes two assertions. The first of these has to do
with the conditions under which f−1 is differentiable; the sec-
ond assertion is a formula for the derivative of f−1 when it ex-

11



ists. The second assertion can be easily proved (hint : start with
f(f−1(x)) = x and take the derivative wrt x).

Example : Let f(x) = x3 − 1, for x > 0.(x). Find the value
of df−1/dx at x = 6 = f(2) without finding the formula for f−1.

Solution : We apply Theorem 1 to obtain the value of the deriva-
tive of f−1 at x = 6:

df

dx
|x=2 = 3x2|x=2 = 12

df−1

dx
|x=f(2) =

1
df
dx
|x=2

=
1

12

1.3 Exponential functions :

We saw that the natural logarithm function defined by y = lnx

is continuous and increasing on the interval (0,∞). Also, lnx
is one-to-one on (0,∞) and, hence, has an inverse. This inverse
function is called the natural exponential function and is defined
as follows.

Definition 5. The natural exponential function, denoted by exp,

is the function satisfying the conditions:

1. ln(expx) = x for all x ∈ (∞,∞)

2. exp(lnx) = x for all x ∈ (0,∞)

Equivalently, exp(x) = y if and only if lny = x.

That the domain of exp is (−∞,∞) and its range is (0,∞)

follows because the range of ln is (−∞,∞) and its domain is

12



(0,∞). The graph of y = exp(x) can be obtained by reflecting
the graph of y = lnx about the line y = x.

Recall that the natural logarithmic function ln is continuous
and one-to-one and that its range is (∞,∞). Therefore, by the
Intermediate Value Theorem there must be a unique real number
x0 such that lnx0 = 1. Let’s denote x0 by e. We will formally
define e as follows.

Definition 6. (The number e)The number e is the number such

that

lne =

∫ e

t

1

t
dt = 1

13



The graph above gives a geometric representation of the num-
ber e. It should be noted that e is an irrational number and has the
approximate value of 2.718281828.
Natural exponential function : For a real number x, we have

lnex = xlne = x(1) = x

Given this, let define natural exponential function.

Definition 7. The natural exponential function, exp, is defined by

the rule

exp(x) = ex

In view of this, we have the following theorem, which gives
us another way of expressing the fact that exp and ln are inverse
functions.

14



Theorem 6. a. lnex = x, for x ∈ (−∞,∞)

b. elnx = x, for x ∈ (0.∞)

Properties of natural exponential function :
1. The domain of f(x) = ex is (−∞,∞), and its range is (0,∞).
2. The function f(x) = ex is continuous and increasing on (−∞,∞).
3. The graph of f(x) = ex is concave upward on (−∞,∞).
4. limx→−∞ e

x = 0 and limx→∞ e
x =∞.

Theorem 7. (Laws of exponents) Let x and y be real numbers

and r be a rational number. Then

a. exey = ex+y

b. ex

ey
= ex−y

c. (ex)r = erx

Proof. We will prove Law (a). The proofs of the other two laws
are similar and is left yo the reader. We have

ln(exey) = lnex + lney = x+ y = lnex+y

Since the natural logarithmic function is one-to-one, we see that

exey = ex+y

Theorem 8. (The derivatives of exponential functions) Let u be

a differentiable function of x. Then

a. d
dx
ex = ex

b. d
dx
eu = eu du

dx

15



Proof. a. Let y = ex, so that lny = x. Differentiating both sides
of the last equation implicitly with respect to x gives

1

y

dy

dx
= 1 or

dy

dx
= y = ex

b. This follows from part (a) by using the Chain Rule.

Example : Find the derivative of
a. f(x) = e−x

2

b. y = ln(e2x + e−2x).
Solution : a. f ′(x) = d

dx
e−x

2
= e−x

2 d
dx

(−x2) = −2xe−x
2

b.
dy

dx
=

d

dx
ln(e2x + e−2x)

=
1

e2x + e−2x

d

dx
(e2x + e−2x)

=
1

e2x + e−2x
(2e2x − 2e−2x)

=
2(e2x − e−2x)

e2x + e−2x

Theorem 9. (Integration of natural exponential function) Since

the derivative of the natural exponential function is the function

itself, the following theorem is immediate. Let u be a differen-

tiable function of x. Then∫
eudu = eu + C

Example : Find
a.
∫
e5xdx

b.
∫ 1

0
ex

1+ex
dx

16



Solution : a. Let u = 5x, so that du = 5dx, or dx = 1
5
du.

Making these substitutions, we obtain∫
e5xdx =

1

5

∫
eudu =

1

5
eu + C =

1

5
e5x + C

b. Let u = 1 + ex, so that du = exdx. If x = 0, then u = 2; and
if x = 1, then u = 1 + e. This gives the lower and upper limits of
integration with respect to u. We have∫ 1

0

ex

1 + ex
dx =

∫ 1+e

2

1

u
du = [lnu]1+e

2 = ln(1+e)−ln2 ≈ 0.620

1.4 General exponential and logarithmic
functions

Exponential functions with base a : The natural exponential
function defined by f(x) = ex has base e. We will now consider
exponential functions that have bases other than e.

Definition 8. Let a be a positive real number with a 6= 1. The

exponential function with base a is the function f defined by

f(x) = ax = exlna

Theorem 10. Let a and b be positive numbers. If x and y are real

numbers, then

a. axay = ax+y

b. (ax)y = axy

c. (ab)x = axbx

17



d. ax

ay
= ax−y

e. (a
b
)x = ax

bx

Proof. We will prove the first law and leave the proofs of the other
laws as exercises.

axay = exlnaeylna

= exlna+ylna

= ex+ylna

= ax+y

Theorem 11. (Derivatives of ax and au) Let a be a positive num-

ber with a 6= 1, and let u be a differentiable function of x. Then

a. d
dx
ax = (lna)ax

b. d
dx
au = (lna)au du

dx

Proof. a. d
dx
ax = d

dx
exlna = exlna d

dx
(xlna) = exlna(lna) =

(lna)ax

b. Follows from the chain rule.

Example : Find the derivative of
a. f(x) = 2x

b. y = 10cos2x

Solution : a. f ′(x) = d
dx

2x = (ln2)2x

b.
dy

dx
=

d

dx
10cos2x

= (ln10)10cos2x
d

dx
cos2x

= (ln10)10cos2x(−sin2x)(2)

= −2(ln10)(sin2x)10cos2x

18



Graphs of y = ax

If a > 1, then lna > 0, and therefore,

d

dx
(ax) = axlna > 0

This shows that the graph of y = ax is rising on (−∞,∞). If
0 < a < 1, then lna < 0, and

d

dx
(ax) = axlna < 0

This implies that if 0 < a < 1, the graph of y = ax is falling on
(=∞,∞). The general shape of the graphs of y = ax are shown
below.

Example : Find the derivative of f(x) = xx.
Solution : Let y = xx. Taking the natural logarithm on both
sides, we obtain

lny = lnxx = xlnx

Differentiating both sides of this equation with respect to x, we
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obtain

y′

y
=

d

dx
(xlnx) = x

d

dx
(lnx) + (lnx)

d

dx
(x)

Therefore, upon multiplying both sides by y, we obtain

y′ = (1 + lnx)y = (1 + lnx)xx

Integrating ax : The formula for integrating an exponential func-
tion with base a follows from reversing the differentiation for-
mula. Thus, we have∫

axdx =
ax

lna
+ C a > 0 and a 6= 1

Logarithmic functions with base a : If a is a positive real
number with a 6= 1, then the function f defined by f(x) = ax

is one-to-one on (−∞,∞), and its range is (0,∞). Therefore, it
has an inverse on (0,∞). This function is called the logarithmic
function with base a and is denoted by loga.

Definition 9. The logarithmic function with base a, denoted by

loga, is the function satisfying the relationship

y = logax if and only if x = ay

Change of base formula :

logax =
lnx

lna
a > 0 and a 6= 1
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Theorem 12. (The power rule) If n is a real number, then

d

dx
(xn) = nxn−1

Proof. Let y = xn and consider the equation

|y| = |xn| = |x|n x 6= 0

Taking the natural logarithm on both sides of the equation, we
obtain

ln|y| = nln|x|

which, upon differentiation with respect to x, yields

y′

y
=
n

x

or
y′ =

ny

x
=
nxn

x
= nxn−1

Theorem 13. (Derivatives of the logarithmic function with base
a) Let u be a differentiable function of x. Then

a. d
dx
loga|x| = 1

xlna
x 6= 0

b. d
dx
loga|u| = 1

ulna
.du
dx

u 6= 0

Example : Find the derivative of f(x) = x2log(e2x + 1).
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Solution : Using the product rule, we obtain

f ′(x) =
d

dx
[x2log(e2x + 1)]

= [
d

dx
(x2)]log(e2x + 1) + x2 d

dx
log(e2x + 1)

= 2xloh(e2x + 1) +
x2

(e2x + 1)ln10
.
d

dx
(e2x + 1)

= 2xlon(e2x + 1) +
2x2x

(e2x + 1)ln10

The definition of the number e as a limit : If we use the
definition of the derivative as a limit to compute f ′(1), where
f(x) = lnx , we obtain

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

ln(1 + h)− ln(1)

h
= lim

h→0

ln(1 + h)

h

= lim
h→0

ln(1 + h)1/h

= ln[lim
h→0

(1 + h)1/h]

But
f ′(1) = [

d

dx
lnx]x=1 = [

1

x
]x=1 = 1

Thus,
ln[lim

h→0
(1 + h)1/h] = 1

or
lim
h→0

(1 + h)1/h = e

Above equation is sometimes used to define the number e. An-
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other equivalent definition of e is:

lim
n→∞

(1 +
1

n
)n = e

1.5 Inverse trigonometric functions :

Inverse trigonometric functions arise when we want to calculate
angles from side measurements in triangles. They also provide
useful anti derivatives and appear frequently in the solutions of
differential equations.

The six basic trigonometric functions are not one-to-one since
their values repeat periodically. However, we can restrict their do-
mains to intervals on which they are one-to-one. The sine func-
tion increases from −1 at x = −π/2 to +1 at x = π/2. By
restricting domain to [−π/2, π/2] we make it one-one, so it has
an inverse which trigonometric is called arcsinx. Similar domain
restrictions can be applied to all six trigonometric functions.
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Since these restricted functions are not one-one, we cam defined
their inverses and denoted as follows:

y = sin−1(x) or y = arcsin(x)

y = cos−1(x) or y = arccos(x)

y = tan−1(x) or y = arctan(x)

y = csc−1(x) or y = arcsc(x)

y = sec−1(x) or y = arcsec(x)

y = cot−1(x) or y = arccot(x)

Graphs of basic inverse trigonometric functions:
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Definition 10. y = arcsinx is the number in [−π/2, π/2] for

which siny = x.

y = arccosx is the number in [0, π] for which cosy = x.

The graph of y = arcsinx as shown in the figure above, is sym-
metric about the origin (it lies along the graph of x = siny).
The arcsine is therefore an odd function i.e. arcsin(−x) =

−arcsinx. The graph of y = arccosx has no such symmetry.

Example : Evaluate
a. arcsin(

√
3/2)

b. arccos(−1/2)

Solution : a. sin(π/3) =
√

3/2 and π/3 belongs to the range
[−π/2, π/2] of the arcsine function. Therefore, arcsin(

√
3/2) =

π/3.
b. cos(2π/3) = −1/2 and 2π/3 belongs to the range [0, π] of the
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arccosine function. Therefore, arccos(−1/2) = 2π/3.

Using the procedure as above, we can find common values for
arcsin and arccos functions.

Example : During a 240 mi airplane flight from Chicago to St.
Louis, after flying 180 mi the navigator determines that the plane
is 12 mi off course, as shown in Figure 7.26. Find the angle a for
a course parallel to the original correct course, the angle b, and
the drift correction angle c = a + b.
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Solution : Using the Pythagorean theorem, we compute an ap-
proximate hypothetical flight distance of 179 mi, had the plane
been flying along the original correct course. Knowing the flight
distance from Chicago to St. Louis, we next calculate the re-
maining leg of the original course to be 61 mi. Applying the
Pythagorean theorem again then gives an approximate distance
of 62 mi from the position of the plane to St. Louis. Finally, we
see that 180sina = 12 and 62sinb = 12, so

a = arcsin(12/180) ≈ 0.067radian ≈ 3.8◦

b = arcsin(12/62) ≈ 0.195radian ≈ 11.2◦

Thus, c = a+ b ≈ 15◦.

Identities Involving Inverse Trigonometric functions :

1. arccosx+ arccos(−x) = π

or
arccos(−x) = π − arccosx.
2. arccotx = π/2− arctanx.
3. arccscx = π/2− arcsecx.
4. arcsinx+ arccosx = π/2.

Definition 11. 1. y = arctanx is the number in (−π/2, π/2) for

which tany = x.

2. y = arccotx is the number in (0, π) for which coty = x.

3. y = arcsecx is the number in (0, π/2) ∪ (π/2, π) for which
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secy = x.

4. y = arccscx is the number in (−π/2, 0) ∪ (0, π/2) for which

cscy = x.

Derivative of Inverse trigonomnetric functions

Derivative of y = arcsin(x).

y = arcsin(x)

x = sin(y)

Derivating wrt x,

1 = cos(y)
dy

dx

dy

dx
=

1

cos(y)

We have x = sin(y), that implies cos(y) =
√

1− x2. Substitut-
ing into the above equation, we get

dy

dx
=

1√
1− x2

Derivative of y = arctan(x).

y = arctan(x)

x = tan(y)

Derivating wrt x,

1 = sec2(y)
dy

dx
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x = tan(y), that implies sec2(y) = 1 + x2. Substituting into the
above equation, we get

dy

dx
=

1

1 + x2

We can find the derivatives of remaining inverse trigonometric
functions in similar fashion. The table below summarises the
derivatives,

Integration formulas

The derivative formulas above yield three useful integration for-
mulas in the table below. The formulas are readily verified by
differentiating the functions on the right-hand sides.
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Example :
a. ∫ √

3
2

√
2

2

dx√
1− x2

= sin−1(x)|
√
3
2√
2
2

= sin−1(

√
3

2
)− sin−1(

√
2

2
)

=
π

3
− π

4

=
π

12

b. ∫
dx√

3− 4x2
=

1

2

∫
du√
a2 − u2

. set a =
√

3, u = 2x

=
1

2
sin−1(

u

a
) + C

=
1

2
sin−1(

2x√
3

) + C

1.6 Hyperbolic functions

The analysis of many problems in engineering and mathematics
involves combinations of exponential functions of the form ecx

and ecx, where c is a constant. Because combinations of these
functions arise so frequently in mathematics and its applications,
they have been given special names. These combinations—the
hyperbolic sine, the hyperbolic cosine, the hyperbolic tangent,
and so on—are referred to as hyperbolic functions and are so
called because they have many properties in common with the
trigonometric functions.

Definition 12. (Hyperbolic functions)
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sinh(x) =
ex − e−x

2
cosh(x) =

ex + e−x

2

tanh(x) =
sinh(x)

cosh(x)
csch(x) =

1

sinh(x)
, x 6= 0

sech(x) =
1

cosh(x)
coth(x) =

cosh(x)

sinh(x)
, x 6= 0

The graphs of the Hyperbolic functions : The graph of y =

sinh(x) can be drawn by first sketching the graphs of y = 1/2ex

and y = −1/2e−x and then adding the y-coordinates of the points
on these graphs corresponding to each x to obtain the y-coordinates
of the points on y = sinh(x). Similarly, the graph of y = cosh(x)

can be drawn by first sketching the graphs of y = 1/2ex and
y = 1/2e−x and then adding the y-coordinates of the points on
these graphs corresponding to each x to obtain the y-coordinates
of the points on y = cosh(x).

The graphs of the other four hyperbolic functions are shown be-
low.
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Hyperbolic identities : The hyperbolic functions satisfy certain
identities that look very much like those satisfied by trigonomet-
ric functions. The list of frequently used hyperbolic identities is
given below.

Theorem 14. Hyperbolic identities

a. sinh(−x) = − sinh(x)

b. cosh(−x) = cosh(x)

c. cosh2(x)− sinh2(x) = 1

d. sech2(x) = 1− tanh2(x)

e. sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y)

f. cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y)
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g. sinh(2x) = 2 sinh(x) cosh(x)

h. cosh(2x) = cosh2(x) + sinh2(x)

i. cosh2(x) = 1
2
(1 + cosh(2x))

j. sinh2(x) = 1
2
(−1 + cosh(2x))

Proof. We will discuss the proof of (a) and (c). rest is left to the
reader as exercise (Hint: use the definition of hyperbolic func-
tions!)
a. sinh(−x) = e−x−e−(−x)

2
= e−x−xx

2
= − ex−e−x

2
= − sinh(x)

c.

cosh2(x)− sinh2(x) = (
ex + e−x

2
)2 − (

ex − e−x

2
)2

=
e2x + 2 + e−2x

4
− e2x − 2 + e−2x

4

= 1

Derivatives and integrals of hyperbolic functions : Since the
hyperbolic functions are defined in terms of ex and e−x, their
derivatives are easily computed. For example,

d

dx
(sinh(x)) =

d

dx
(
ex − e−x

2
) =

ex + e−x

2
= cosh(x)

. The table below summarises the differentiation formulas to-
gether with the corresponding integration formulas for the six hy-
perbolic functions.
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Example : Find the derivative of cosh2(ln2x).
Solution :

d

dx
cosh2(ln2x) = 2 cosh(ln2x)

d

dx
cosh(ln2x)

= 2 cosh(ln2x) sinh(ln2x)
d

dx
ln2x

=
2

x
cosh(ln2x) sinh(ln2x)

Example : Find
∫

cosh2(3x) sinh(3x)dx.
Solution : Let u = 3x so that du = 3dx or dx = 1

3
du. Then∫

cosh2(3x) sinh(3x)dx =
1

3

∫
cosh2(u) sinh(u)du

Next, let v = cosh(u) so that dv = sinh(u)du. Then

1

3

∫
cosh2(u) sinh(u)du =

1

3

∫
v2dv =

1

9
v3 + C
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So, ∫
cosh2(3x) sinh(3x)dx =

1

9
cosh3(3x) + C

Inverse Hyperbolic functions : Notice that both sinh(x) and
tanh(x) are one-to-one on (−∞,∞) and hence have inverse func-
tions that we denote by sinh−1(x) and tanh−1(x) respectively.
Also, cosh(x) is one-to-one on [0,∞), so, if restricted to this do-
main, it has an inverse, cosh−1(x). By examining the graphs of
the other hyperbolic functions and making the necessary restric-
tions on their domains, we are able to define the other inverse
hyperbolic functions.

The graphs of y = sinh−1(x), y cosh−1(x), and y = tanh−1(x)

are shown below.
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Example : Show that sinh−1(x) = ln(x+
√

(x2 + 1)).
Solution : Let y = sinh−1(x). Then

x = sinh(y) =
ey − e−y

2

or
ey − 2x− e−y = 0

On multiplying both sides of this equation by ey, we obtain

e2y − 2xey − 1 = 0

which is a quadratic in ey. Using the quadratic formula, we have

ey =
2x±

√
4x2 + 4

2
= x±

√
x2 + 1

Only the root x +
√
x2 + 1 is admissible since x−

√
x2 + 1 < 0

but ey > 0. Therefore, we have

ey = x+
√
x2 + 1

or
y = ln(x+

√
x2 + 1)

that is,
sinh−1(x) = ln(x+

√
x2 + 1)

In this similar manner, we can find out the representations of the
other inverse hyperbolic functions.
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Representations of Inverse Hyperbolic Functions in Terms of
Logarithmic Functions

sinh−1(x) = ln(x+
√
x2 + 1), x ∈ (−∞,∞)

cosh−1(x) = ln((x+
√
x2 − 1), x ∈ [1,∞)

tanh−1(x) =
1

2
ln(

1 + x

1− x
), x ∈ (−1, 1)

Derivatives of Inverse Hyperbolic functions : The derivatives
of the inverse hyperbolic functions can be found by differentiating
the function in question directly. For example,

d

dx
sinh−1(x) =

d

dx
ln(x+

√
x2 + 1)

=
1

x+
√
x2 + 1

[1 +
1

2
(x2 + 1)−1/2(2x)]

=
1

x+
√
x2 + 1

.
x+
√
x2 + 1√

x2 + 1

=
1√

x2 + 1

Alternatively, y = sinh−1(x) if and only if x = sinh(y)

Differentiating this last equation implicitly with respect to x, we
obtain

d

dx
(x) =

d

dx
(sinh(y))

1 = (cosh(y))
dy

dx

or
dy

dx
=

1

cosh(y)
=

1√
sinh2(y) + 1

=
1√

x2 + 1
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Using techniques above, we obtain the following formulas for
differentiating the inverse hyperbolic functions.

Example : A power line is suspended between two towers as
depicted in Figure below. The shape of the cable is a catenary
with equation

y = 80 cosh(
x

80
) − 100 ≤ x ≤ 100

where x is measured in feet. Find the length of the cable.
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Solution : Taking advantage of the symmetry of the situation, we
see that the required length is given by

L = 2

∫ 100

0

√
1 + (

dy

dx
)2dx

But

dy

dx
=

d

dx
[80 cosh(

x

80
)] = 80 sinh(

x

80
).
d

dx
(
x

80
) = sinh(

x

80
)

So,√
1 + (

dy

dx
)2 =

√
1 + sinh2(

x

80
) =

√
1 + cosh2(

x

80
)− 1

=

√
cosh2(

x

80
) = cosh(

x

80
)

Therefore,

L = 2

∫ 100

0

cosh(
x

80
)dx

= 2[80 sinh(
x

80
)]100

0

= 160 sinh(
100

80
) = 160 sinh(

5

4
)

≈ 256ft.
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1.7 Indeterminate forms and l’Hopital’s
rule

If the limx→a f(x) = 0 and and limx→a g(x) = 0, then the limit

lim
x→a

f(x)

g(x)

is called an indeterminate form of type 0/0. The undefined ex-
pression 0/0 does not provide us with a definitive answer con-
cerning the existence of the limit or its value, if the limit exists.So,
given an indeterminate form of the type 0/0, we want to see if
there is a more general and efficient method for resolving whether
the limit

lim
x→a

f(x)

g(x)

exists, and if so, what is the limit?

The indeterminate forms 0/0 and∞/∞

Theorem 15. (l’Hopital’s Rule) Suppose that f and g are differ-

entiable on an open interval I that contains a, with the possible

exception of a itself, and g′(x) 6= 0 for all x in I . If limx→a
f(x)
g(x)

indeterminate form of the type 0/0 or∞/∞ , then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

provided that the limit on the right-hand side exists or is infinite.

Notes :
1. l’Hopital’s Rule is also valid for one-sided limits as well as
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limits at infinity or negative infinity; that is, we can replace x→ a

by any of the symbols x→ a+, x→ a−, x→∞, or x→ −∞.
2. Before applying l’Hopital’s Rule, check to see that the limit
does have one of the indeterminate forms. For example, cos(x)→
1 as x→ 0+, so

lim
x→0+

cos(x)

x
=∞

If we had applied l’Hopital’s Rule to evaluate the limit without
first ascertaining that it had an indeterminate form, we would have
obtained the erroneous result

lim
x→0+

cos(x)

x
= lim

x→0+

−sin(x)

1
= 0

Example : Evaluate limx→1+
sin(πx)√
x−1

Solution : We have an indeterminate form of the type 0¿0. Ap-
plying l’Hopital’s Rule, we obtain

lim
x→1+

sin(πx)√
x− 1

= lim
x→1+

πcos(πx)
1
2
(x− 1)−1/2

= lim
x→1+

2π(cos(πx))
√
x− 1

= 0

The Indeterminate forms∞−∞ and 0.∞

If limx→a f(x) =∞ and limx→a g(x) =∞, then the limit

lim
x→a

[f(x0− g(x)]

is said to be an indeterminate form of the type∞−∞. An inde-
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terminate form of this type can often be expressed as one of the
type 0/0 or∞/∞ by algebraic manipulation.

Example : Evaluate limx→0+( 1
x
− 1

ex−1
).

Solution : We have an indeterminate form of the type∞−∞ .
By writing the expression as a single fraction, we obtain the in-
determinate form of the type 0/0. This enables us to evaluate the
resulting expression using l’Hopital’s Rule

lim
x→0+

(
1

x
− 1

ex − 1
= lim

x→0+

ex − x− 1

x(ex − 1)

= lim
x→0+

ex − 1

ex − 1 + xex)

= lim
x→0+

ex

(x+ 2)ex
=

1

2

If limx→a f(x) = 0 and limx→a g(x)±∞, then limx→a f(x)g(x)

is said to be an indeterminate form of the type 0.∞. An indeter-
minate form of this type also can be expressed as one of the type
0/0 or∞/∞ by algebraic manipulation.

Example : Evaluate limx→)+ lnx.
Solution : We have an indeterminate form of the type 0.∞. By
writing

xlnx =
lna

1
x

the given limit can be cast in an indeterminate form of the type
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∞/∞. Then, applying l’Hopital’s Rule, we obtain

lim
x→0+

xlnx = lim
x→0+

lna
1
x

= lim
x→0+

1
x

− 1
x2

= lim
x→0+

(−x) = 0

The Indeterminate forms 00,∞0, and 1∞

The limit
lim
x→a

[f(x)]g(x)

is said to be an indeterminate form of the type
1. 00 if limx→a f(x) = 0 and limx→a g(x) = 0.
2. ∞0 if limx→a f(x) =∞ and limx→a g(x) = 0.
3. 1∞ if limx→a f(x) = 1 and limx→a g(x) = ±∞.

Example : Evaluate limx→0+ x
x.

Solution : We have an indeterminate form of the type 00. Let

y = xx

Then
lny = lnxx = xlnx

Finally, using the identity y = elny and the continuity of the ex-
ponential function, we have

lim
x→0+

xx = lim
x→0+

y = lim
x→0+

elny = elimx→0+ lny = e0 = 1
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Example : Evaluate limx→0+( 1
x
)sin(x).

Solution : We have an indeterminate form of the type∞0. Let

y = (
1

x
)sin(x)

Then
lny = ln(

1

x
)sin(x) = (sin(x))ln(

1

x
)

and
lim
x→0+

lny = lim
x→0+

(sin(x))ln
1

x

This last limit is an indeterminate form of the type 0.∞ . By
writing

(sin(x))ln(
1

x
) =

ln 1
x

1
sin(x)

we can transform it into an indeterminate form of the type∞/∞
and hence use l’Hopital’s Rule. We have

lim
x→0+

lny = lim
x→0+

ln 1
x

1
sin(x)

= lim
x→0+

lnx
1

sin(x)

= lim
x→0+

−1
x

−cos(x)
sin2(x)

= lim
x→0+

sin2(x)

xcos(x)

= lim
x→0+

(
sin(x)

x
)(tan(x)) = 0

Therefore,

lim
x→0+

(
1

x
)sin(x) = lim

x→0+
y = lim

x→0+
elny = elimx→0+ lny = e0 = 1
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Example : Evaluate limx→∞(1 + 1
x
)x.

Solution : We have an indeterminate form of the type 1∞. Let
y = (1 + 1

x
)x Then

lny = ln(1 +
1

x
)x = xln(1 +

1

x
)

so,
lim
x→∞

lny = lim
x→∞

xln(1 +
1

x
)

has an indeterminate form of the type 0.∞. Rewriting and using
l’Hopital’s Rule, we obtain

lim
x→∞

lny = lim
x→∞

xln(1 +
1

x
)

= lim
x→∞

ln(1 + 1
x
)

1
x

= lim
x→∞

[
( 1

1+ 1
x

)(− 1
x2

)

−1
x2

]

= lim
x→∞

1

1 + 1
x

= 1

Therefore,

lim
x→∞

(1 +
1

x
)x = lim

x→∞
y = lim

x→∞
elny = elimx→∞ lny = e1 = e
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Module 2

Infinite sequences and series

2.1 Improper Integral

Definition 13. Integrals with infinite limits of integration are im-

proper integrals of Type I .

1. If f(x) is continuous on [a,∞), then∫ ∞
a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx.

2. If f(x) is continuous on (−∞, b] , then∫ b

∞
(x)dx = lim

a→−∞

∫ b

a

f(x)dx.

3. If f(x) is continuous on (−∞,∞), then∫ ∞
∞

f(x)dx =

∫ c

∞
f(x)dx+

∫ ∞
c

f(x)dx,

where c is any real number .
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In each case, if the limit exists and is finite, we say that the im-

proper integral converges and that the limit is the value of the

improper integral. If the limit fails to exist, the improper integral

diverges and we say the area under the curve is infinite.

Example : Evaluate
∫∞

1
lnx
x2
dx

Solution : Integrating by parts,∫ b

1

lnx

x2
dx = [(lnx)(−1

x
)]b1 −

∫ b

1

(−1

x
)(

1

x
)dx

= − lnb
b
− [

1

x
]b1

= − lnb
b
− 1

b
+ 1

∫ ∞
1

lnx

x2
dx = lim

b→∞

∫ b

1

lnx

x2
dx

= lim
b→∞

[− lnb
b
− 1

b
+ 1]

= −[ lim
b→∞

lnb

b
]− 0 + 1

= −[ lim
b→∞

1/b

1
] + 1 = 0 + 1 = 1

Example : Evaluate
∫∞
−∞

dx
1+x2

.
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Solution :
∫∞
−∞

dx
1+x2

=
∫ 0

−∞
dx

1+x2
+
∫∞

0
dx

1+x2∫ 0

−∞

dx

1 + x2
= lim

a→−∞

∫ 0

a

dx

1 + x2

= lim
a→−∞

tan−1x|0a

= lim
a→−∞

(tan−10− tan−1a)

=
π

2∫ ∞
0

dx

1 + x2
= lim

b→∞

∫ b

0

dx

1 + x2

= lim
b→∞

tan−1x|b0

= lim
b→∞

(tan−1b− tan−10)

=
π

2

Thus,
∫∞
−∞

dx
1+x2

=
∫ 0

−∞
dx

1+x2
+
∫∞

0
dx

1+x2
= π

2
+ π

2
= π.

Exercise : Examine for what values of p does the integral
∫∞

1
dx
xp

converge?

Definition 14. Integrals of functions that become infinite at a

point within the interval of integration are improper integrals of

Type II .

1. If f(x) is continuous on (a, b] and discontinuous at a, then∫ b

a

f(x)dx = lim
c→a+

∫ b

c

f(x)dx.
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2. If f(x) is continuous on [a, b) and discontinuous at b, then∫ b

a

f(x)dx = lim
c→b−

∫ c

a

f(x)dx.

3. If f(x) is discontinuous at c, where a < c < b, and continuous

on [a, c) ∪ (c, b] , then∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

In each case, if the limit exists and is finite, we say the improper

integral converges and that the limit is the value of the improper

integral. If the limit does not exist, the integral diverges. In Part

3 of the definition, the integral on the left side of the equation

converges if both integrals on the right side converge; otherwise

it diverges.

Example : Evaluate
∫ 1

0
dx

1−x .
Solution : Notice that f(x) = 1

1−x is continuous at [0, 1) but is
discontinuous at x = 1.

lim
b→1−

∫ b

0

dx

1− x
= lim

b→1−
[−ln|1− x|]b0

= lim
b→1−1

[ln(1− b) + 0] =∞.

The limit is infinite, so the integral diverges.
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2.2 Sequences

Definition 15. A sequence {an} is a function whose domain is

the set of positive integers. The functional values a1, a2, a3, an,....

are the terms of the sequence, and the term an is called the a nth
term of the sequence.

Remark: 1. The sequence {an} is also denoted by {an}∞n=1.
2. Sometimes it is convenient to begin a sequence with ak. In this
case the sequence is {an}∞n=1, and its terms are ak, ak+1, ak+2,..,
an,... .

Example : List the terms of the sequence.
a.{ n

n+1
} b.{(−1)n

√
n− 2}∞n=2 c.{sinnπ

3
}∞n=0

Solution:
a. Here an = f(n) = n

n+1
. Thus,

a1 = f(1) = 1
1+1

= 1
2
, a2 = f(2) = 2

2+1
= 2

3
, a3 = f(3) =

3
3+1

= 3
4
,... and we see that the given sequence can be written as

{ n

n+ 1
} = {1

2
,
2

3
,
3

4
,
4

5
, ...,

n

n+ 1
, ...}

b. {(−1)n
√
n− 2}∞n=2 = {(−1)2

√
0, (−1)3

√
1, (−1)4

√
2,

(−1)5
√

3, ..., (−1)n
√
n− 2, ...}

= {0,−
√

1,
√

2,−
√

3, ..., (−1)n
√
n− 2, ...}
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Note that n starts from 2 in this example. Refer to Remark: 2.

c. {sinnπ
3
}∞n=0 =

{
sin0, sin

π

3
, sin

2π

3
, sin

3π

3
, sin

4π

3
, ..., sin

nπ

3
, ...

}
=

{
0,

√
3

2
,

√
3

2
, 0,−

√
3

2
,−
√

3

2
, ..., sin

nπ

3
, ...

}

Note that n starts from 0 in this example. Refer to Remark: 2.

Example: Find an expression for the n th term of each sequence.
a. {2, 3√

2
, 4√

3
, 5√

4
, ...} b. {1,−1

2
, 1

3
,−1

4
, ...}

Solution: a. The terms of the sequence may be written in the
form

a1 =
1 + 1√

1
, a2 =

2 + 1√
2
, a3 =

3 + 1√
3
, a4 =

4 + 1√
4
, ...

Thus, which we see that an = n+1√
n

.
b. Note that (−1)r is equal to 1 if r is an even integer and -1 if r
is an odd integer. Using this result, we obtain

a1 =
(−1)0

1
, a2 =

(−1)1

1
, a3 =

(−1)2

3
, a4 =

(−1)3

4
, ...

Hence, we can conclude that the nth term is an = (−1)n−1

n
.

Recursively defined sequences: The sequence is defined by spec-
ifying the first term or the first few terms of the sequence and a
rule for calculating any other term of the sequence from the pre-
ceding term(s).
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Definition 16. Limit of a Sequence
A sequence an has the limit L ,written

lim
n→∞

an = L

if an can be made as close to L as we please by taking n suffi-

ciently large. If limn→∞an exists, we say that the sequence con-
verges. Otherwise, we say that the sequence diverges.

We say that a sequence {an} converges and has the limit L,

written

lim
n→∞

an = L

if for every ε > 0 there exists a positive integer N such that |an−
L| < ε whenever n > N .

Theorem 16. If lim
x→∞

f(x) = L and {an} is a sequence defined

by an = f(n), where n is a positive integer, then lim
n→∞

an = L.

Remark: The converse of the above theorem is false. Consider
the sequence {sinnπ} = {0}. Note that this sequence converges
to 0. However, lim

x→∞
sinπx does not exist.

Theorem 17. Limit Laws for Sequences
Suppose that lim

n→∞
an = Land lim

n→∞
bn = M and that c is a con-

stant. Then

• lim
n→∞

can = cL

• lim
n→∞

(an ± bn) = L±M

• lim
n→∞

anbn = LM
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• lim
n→∞

an
bn

= L
M

, provided that bn 6= 0 and M 6= 0

• lim
n→∞

apn = Lp, if p > 0 and an > 0

Theorem 18. Squeeze Theorem for Sequences
If there exists some integer N such that an ≤ bn ≤ cn for all

n ≥ N and lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

Figure 2.1: The sequence {bn} is squeezed between the sequences
{an} and {cn}

.

Example: For n! defined as n! = n(n− 1)(n− 2)...1; find

lim
n→∞

n!

nn
.

Solution: Let an = n!/nn. Then, the first three terms are given
by

a1 =
1!

1
= 1, a2 =

2!

2
=

2 · 1
2 · 2

, a3 =
3!

3
=

3 · 2 · 1
3 · 3 · 3
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and the nth term is

a3 =
n!

n
=
n(n− 1) · ... · 3 · 2 · 1
n · n · ... · n · n · n

=
(n
n

)(n− 1

n

)
· ... ·

(
3

n

)(
2

n

)(
1

n

)
≤
(

1

n

)
Therefore,

0 < an ≤
1

n
.

Since lim
n→∞

1
n

= 0, the Squeeze Theorem gives us

lim
n→∞

an = lim
n→∞

n!

nn
= 0

Theorem 19. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

Remark: The above theorem is an immediate consequence of the
Squeeze Theorem.

Theorem 20. If lim
n→∞

an = L and the function f is continuous at

L , then

lim
n→∞

f(an) = f( lim
n→∞

an) = f(L)

Definition 17. Monotonic Sequences
A sequence {an} is increasing if

a1 < a2 < a3 < ... < an < an+1 < ...

and decreasing if

a1 > a2 > a3 > ... > an > an+1 > ...
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A sequence is monotonic if it is either increasing or decreasing.

Definition 18. Bounded Sequence
A sequence {an} is bounded above if there exists a number M

such that

an ≤M for all n ≥ 1.

A sequence is bounded below if there exists a numberm such that

m ≤ an for all n ≥ 1.

A sequence is bounded if it is both bounded above and bounded

below.

Remarks:

a. A bounded need not be convergent. Note that, the se-
quence (−1)n is bounded since−1 ≤ (−1)n ≤ 1; however,
it is evidently divergent.

b. A monotonic sequence need not be convergent. Consider
the sequence {n}. This sequence is clearly increasing, yet
divergent.

Theorem 21. Monotone Convergence Theorem for Sequences
Every bounded, monotonic sequence is convergent.

Example: Show that
{

2n

n!

}
is convergent and find its limit.

Solution: Here, an = 2n/n!. Therefore, the first few terms of the
sequence are
a1 = 2, a2 = 2, a3 ≈ 1.333333, a4 ≈ 0.066667, a5 = 0.266667,
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a6 ≈ 0.0888889, ...a10 ≈ 0.000282

This suggests that the sequence is decreasing from n = 2 onward.
To prove this, we compute

an+1

an
=

2n+1

(n+1)!

2n

n!

=
2n+1n!

2n(n+ 1)!
=

2 · n!

(n+ 1)n!
=

2

n+ 1

So, we have
an+1

an
≤ 1 if n ≥ 1.

Thus, an+1 ≤ an if n ≥ 1 and hence we have proved the assertion.
Since all the terms in the sequence are positive, {an} is bounded
below by 0. Therefore, the sequence is decreasing and bounded
below, and the Monotone Convergence Theorem for Sequences
guarantees that it converges to a non-negative limit L.
Now to find L, consider:

an+1 =
2

n+ 1
an

Note that since lim
n→∞

an+1 = L, we also have lim
n→∞

an = L. Taking
the limit on both sides of the above equation and using Law (3)
for limits of sequences, we obtain

L = lim
n→∞

an+1 = lim
n→∞

(
2

n+ 1
an

)
= lim

n→∞

2

n+ 1
· lim
n→∞

an = 0·L = 0

Thus, we can conclude that lim
n→∞

2n/n! = 0.
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2.3 Series

Definition 19. In general, an expression of the form

a1 + a2 + a3 + ...+ an + ...

is called an infinite series or, more simply, a series. The numbers

a1, a2, a3, ... are called the terms of the series; an is called the

nth term, or general term, of the series; and the series itself is

denoted by the symbol
∞∑
n=1

an

or simply
∑
an.

Definition 20. Convergence of Infinite Series
Given an infinite series

∞∑
n=1

an = a1 + a2 + a3 + ...+ an + ...

the nth partial sum of the series is

Sk =
n∑
k=1

ak = a1 + a2 + a3 + ...+ an
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If the sequence of partial sums {Sn} converges to the number S,

that is, if lim
n→∞

Sn = S, then the series
∑
an converges and has

sum S, written

∞∑
n=1

an = a1 + a2 + a3 + ...+ an + ... = S

If {Sn} diverges, then the series
∑
an diverges.

Example: Determine whether the series converges. If the series
converges, find its sum.

a.
∞∑
n=1

n b.
∞∑
n=1

(
1

n
− 1

n+ 1

)

Solution : a. The nth partial sum of the series is

Sn = 1 + 2 + 3 + ...+ n =
n(n+ 1)

2

Since
lim
n→∞

Sn = lim
n→∞

n(n+ 1)

2
=∞

Thus, we can conclude that the limit does not exist and
∑∞

n=1 n

diverges.
b. The nth partial sum of the series is

Sn =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ ...+

(
1

n− 1
− 1

n

)
+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
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Since
lim
n→∞

Sn = lim
n→∞

(
1− 1

n+ 1

)
= 1

we can conclude that

∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1

Remark: The series in part b. of Example is called a telescoping
series.
Example: Show that the series

∑∞
n=1

4
4n2−1

is convergent, and
find its sum.
Solution: First, we use partial fraction decomposition to rewrite
the general term an = 4/(4n2 − 1):

an =
4

4n2 − 1
=

4

(2n− 1)(2n+ 1)
=

2

2n− 1
− 2

2n+ 1

Then we write the nth partial sum of the series as

Sn =
n∑
k=1

4

4k2 − 1
=

n∑
k=1

(
2

2k − 1
− 2

2k + 1

)
=

(
2

1
− 2

3

)
+

(
2

3
− 2

5

)
+

(
2

5
− 2

7

)
+ ...+

(
2

2n− 1
− 2

2n+ 1

)
= 2− 2

2n+ 1

Note that this is also a telescoping series. Now, since

lim
n→∞

Sn = lim
n→∞

(
2− 2

2n+ 1

)
= 2
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we can conclude that the given series is convergent and has sum
2.

2.3.1 Geometric Series

Definition 21. Geometric Series
A series of the form

∞∑
n=1

arn−1 = a+ ar + ar2 + ...+ arn−1 + ...a 6= 0

is called a geometric series with common ratio r .

Theorem 22. If |r| < 1, then the geometric series

∞∑
n=1

arn−1 = a+ ar + ar2 + ...+ arn−1 + ...

converges, and its sum is
∑∞

n=1 ar
n−1 = a

1−r . The series diverges

if |r| ≥ 1.

Proof. The nth partial sum of the series is

Sn =
∞∑
n=1

arn−1 = a+ ar + ar2 + ...+ arn−1

Multiplying both sides of this equation by r gives

rSn = ar + ar2 + ar3 + ...+ arn

Subtracting the second equation from the first then yields (1 −
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r)Sn = a(1− rn). If r 6= 1, we can solve for Sn, obtaining

Sn =
a(1− rn)

1− r

Recall that lim
n→∞

rn = 0 if |r| < 1. Then,

lim
n→∞

Sn = lim
n→∞

a(1− rn)

1− r
=

a

1− r

This implies that

∞∑
n=1

arn−1 =
a

1− r
|r| < 1

When |r| > 1, the sequence {rn} diverges. So, lim
n→∞

Sn does
not exist. Thus, the geometric series diverges. Verify that {Sn}
diverges if r = ±1, implying that the series also diverges for these
values of r.

Example: Express the number 3.214 = 3.2141414... as a rational
number.
Solution: We rewrite the number as

3.2141414... = 3.2 +
14

103
+

14

105
+

14

107
+ ...

=
32

10
+

14

103

[
1 +

1

102
+

1

104
+ ...

]
=

32

10
+
∞∑
n=1

(
14

103

)(
1

102

)n−1

Note that the expression after the first term is a geometric series
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with a = 14
1000

and r = 1
100

. Using the theorem above, we have

3.2141414... =
32

10
+

14
1000

1− 1
100

=
32

10
+

14

990
=

3182

990

2.3.2 The Harmonic Series

Definition 22. The series

∞∑
n=1

1

n
= 1 +

1

2 + 1
3

+ ...

is called the harmonic series.

For showing that this series is divergent, firstly note that: If
a sequence {bn} is convergent, then any subsequence obtained
by deleting any number of terms from the parent sequence {bn}
must also converge to the same limit. Therefore, to show that a
sequence is divergent, it suffices to produce a subsequence of the
parent sequence that is divergent.
Thus, it would be sufficient to show that the subsequence
S2, S4, S8, S16, ..., S2n , ...

of the sequence {Sn} of partial sums of the harmonic series is
divergent.
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S2 = 1 +
1

2

S4 = 1 +
1

2
+

(
1

3
+

1

4

)
> 1 +

1

2
+

(
1

4
+

1

4

)
= 1 + 2

(
1

2

)
S8 = 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
> 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
= 1 + 3

(
1

2

)
S16 = 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ ...+

1

8

)
+

(
1

9
+ ...+

1

16

)
> 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+ ...+

1

8

)
+

(
1

16
+ ...+

1

16

)
= 1 + 4

(
1

2

)
Thus, S2n > 1 + n

(
1
2

)
. Therefore, lim

n→∞
S2n = ∞. So, {Sn} is

divergent. This proves that the harmonic series is divergent.

2.3.3 The Divergence Test

Theorem 23. If
∑∞

n=1 an converges, then lim
n→∞

an = 0.

Proof. We can write the partial sum as Sn = a1 + a2 + ... +

an−1 + an = Sn−1 + an, so an = Sn − Sn−1. Since
∑∞

n=1 an is
convergent, the sequence {Sn} is convergent. Let lim

n→∞
Sn = S.

Then

lim
n→∞

an = lim
n→∞

(Sn−Sn−1) = lim
n→∞

Sn− lim
n→∞

Sn−1 = S−S = 0
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Theorem 24. The Divergence Test
If lim
n→∞

an does not exist or lim
n→∞

an 6= 0, then
∑∞

n=1 an diverges.

Remark: The Divergence Test does not say that if lim
n→∞

an = 0,
then

∑∞
n=1 an must converge. In other words, the converse of

2.3.3is not true in general.
Example: Show that the following series are divergent.

a.
∞∑
n=1

(−1)n−1 b.
∞∑
n=1

2n2 + 1

3n2 − 1

Solution: a. Observe that lim
n→∞

an = lim
n→∞

(−1)n−1 does not
exist. Thus, by divergence test the series diverges.
b.

lim
n→∞

an = lim
n→∞

2n2 + 1

3n2 − 1
= lim

n→∞

2 + 1
n2

3− 1
n2

=
2

3
6= 0

Thus, by the Divergence Test, the series diverges.

2.3.4 Properties of Convergent Series

Theorem 25. Properties of Convergent Series
If
∑∞

n=1 an = A and
∑∞

n=1 bn = B are convergent and c is any

real number, then
∑∞

n=1 can and
∑∞

n=1(an± bn) are also conver-

gent, and

a.
∑∞

n=1 can = c
∑∞

n=1 an = cA

b.
∑∞

n=1(an ± bn) =
∑∞

n=1 an ±
∑∞

n=1 bn = A±B

Example: Show that the series
∑∞

n=1

[
2

n(n+1)
− 4

3n

]
is conver-

gent, and find its sum.
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Solution: Consider
∑∞

n=1 1/[n(n + 1)]. Using partial fraction
decomposition, and previous example,

1 =
∞∑
n=1

1

[n(n+ 1)]
=
∞∑
n=1

(
1

n
− 1

n+ 1

)

Observe that
∑∞

n=1
4

3n
is a geometric series with a = 4

3
and r = 1

3
.

Thus,
∑∞

n=1
4

3n
=

4
3

1− 1
3

= 2. Thus, by Properties of Convergent
Series the given series is convergent and

∞∑
n=1

[
2

n(n+ 1)
− 4

3n

]
= 2

∞∑
n=1

1

n(n+ 1)
−
∞∑
n=1

4

3n
= 2 ·1−2 = 0

2.4 The Integral Test

Theorem 26. The Integral Test Suppose that f is a continuous,

positive, and decreasing function on [1,∞) if f(n) = an for n ≥
1, then

∞∑
n=1

an and
∫ ∞

1

f(x)dx

either both converge or both diverge.

Proof. In Figure (a) given, observe that the height of the first
rectangle is a2 = f(2). Since this rectangle has width 1, the area
of the rectangle is also a2 = f(2).Similarly, the area of the second
rectangle is a3, and so on. Comparing the sum of the areas of the
first (n− 1) inscribed rectangles with the area of the region under
the graph of f over the interval [1, n] , we see that

a2 + a3 + ...+ an ≤
∫ n

1

f(x)dx
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which gives us the following result. The second inequality fol-
lows if we consider

∫ n
1
f(x)dx is convergent and has value L.

Sn = a1 + a2 + a3 + ...+ an ≤ a1 +

∫ n

1

f(x)dx ≤ a1 + L

This shows that {Sn} is bounded above. Also, since an+1 =

f(n + 1) ≥ 0, we have that Sn+1 = Sn + an+1 ≥ Sn which
proves that {Sn} is increasing as well. Therefore, by Monotone
Convergence Theorem for Sequences, {Sn} is convergent. Con-
sequently,

∑∞
n=1 an is convergent.

Next, by examining Figure(b) we can see that∫ n

1

f(x)dx ≤ a1 + a2 + a3 + ...+ an−1 = Sn−1

Thus, if
∫ n

1
f(x)dx diverges (to∞ since f(x) ≥ 0),then lim

n→∞
Sn−1 =

lim
n→∞

Sn =∞, and
∑∞

n=1 an is divergent.

Example: Use the Integral Test to determine whether the fol-

66



lowing converges or diverges.

a.
∞∑
n=1

1

n2 + 1
b.

∞∑
n=1

ln n
n

Solution: a. Here an = f(n) = 1/(n2 + 1), giving f(x) =

1/(x2 + 1). Since f is continuous, positive, and decreasing on
[1,∞), we may use the Integral Test.∫ ∞

1

1

x2 + 1
dx = lim

b→∞

∫ b

1

1

x2 + 1
dx

= lim
b→∞

[tan−1x]b1

= lim
b→∞

(tan−1b− tan−11)

=
π

2
− π

4

=
π

4

Since
∫∞

1
1

x2+1
dx converges, so does

∑∞
n=1

1
n2+1

.
b. Here an = (ln n)/n. Thus, f(x) = (ln x)/x. Observe that f is
continuous and positive on [1,∞). Now to see if it is decreasing
or not. Consider

f ′(x) =
x
(

1
x

)
− ln x
x2

=
1− ln x
x2

Note that f ′ < 0 when ln x > 1, i.e., if x > e. Hence, f is
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decreasing on [3,∞). Therefore, we can use the Integral Test:∫ ∞
3

ln x

x
dx = lim

b→∞

∫ b

3

ln x

x
dx

= lim
b→∞

[
1

2
(ln x)2

]b
3

= lim
b→∞

1

2
[(ln b)2 − (ln 3)2]

=∞

We can conclude that
∑∞

n=1
ln n
n

diverges.

The p -Series

Definition 23. The p -Series
A p -series is a series of the form

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+ ...

where p is a constant.

Remark: Note that when p = 1, the p -series is just the harmonic
series.

Theorem 27. Convergence of the p -Series
The p -series a p converges if p > 1 and diverges if p ≤ 1.

Proof. When p < 0, lim
n→∞

1
np = ∞ and if p = 0, then lim

n→∞
1
np =

1. In either case, lim
n→∞

1
np 6= 0, so the p-series diverges by the

Divergence Test. Recall that
∫∞

1
1/xpdx converges if p > 1 and
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diverges if p ≤ 1. Using this and by the Integral Test, we have
that

∑∞
n=1 1/np converges if p > 1 and diverges if p ≤ 1.

Example: Determine whether the given series converges or di-
verges.

a.
∞∑
n=1

1

n2
b.

∞∑
n=1

1√
n

c.
∞∑
n=1

n−1.001

Solution: a. This is a p-series with p = 2 > 1. Thus it converges
by theorem.
b. This is a p-series with p = 1/2 < 1. Thus it diverges by
theorem.
c. This is a p-series with p = 1.001 > 1. Thus it converges by
theorem.

2.5 The Comparison Tests

2.5.1 The Comparison Test

Theorem 28. Suppose that
∑
an and

∑
bn are series with posi-

tive terms.

a. If
∑
bn is convergent and an ≤ bn for all n , then

∑
an is also

convergent.

b. If
∑
bn is divergent and an ≥ bn for all n , then

∑
an is also

divergent.

Proof. Let

Sn =
n∑
k=1

ak and Tn =
n∑
k=1

bk
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be the nth terms of the sequence of partial sums of
∑
an and∑

bn, respectively. Since both series have positive terms, {Sn}
and {Tn} are increasing.
a. If

∑∞
n=1 bn is convergent, then there exists a number L such

that lim
n→∞

Tn = L and Tn ≤ L for all n. Since an ≤ bn for all
n, we have Sn ≤ Tn, and this implies that Sn ≤ L for all n.
We have shown that {Sn} is increasing and bounded above, so by
the Monotone Convergence Theorem for Sequences,

∑
an con-

verges.
b. If

∑∞
n=1 bn is divergent, then lim

n→∞
Tn =∞ since {Tn} increas-

ing. But an ≥ bn for all n, we have Sn ≥ Tn, and this implies that
lim
n→∞

Sn =∞. Therefore,
∑
an diverges.

Example: Determine whether the following series are convergent
or divergent.

a.
∞∑
n=1

1

3 + 2n
b.

∞∑
n=2

1√
n− 1

Solution: a. Let an = 1
3+2n

. For large n, 3 + 2n behaves like 2n.
So, an behaves like bn = (1

2

n
). Comparing

∑
an with

∑
bn, we

see that
∑
bn is a geometric series with r = 1

2
< 1, implying that

it is convergent. Observe that

an =
1

3 + 2n
<

1

2n
= bn n ≥ 1

Thus by Comparison test, the given series is convergent.

Remark: Since the convergence or divergence of a series is not
affected by the omission of a finite number of terms of the series,
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the condition an ≥ bn (or an ≤ bn) for all n can be replaced by
the condition that these inequalities hold for all n ≥ N for some
integer N .

b. Let an = 1√
n−1

. For n large,
√
n − 1 behaves like

√
n, so an

behaves like bn = 1√
n

. Note that the series
∑∞

n=2 bn =
∑∞

n=2

√
n

is a p-series with p = 1
2
, 1, thus making it divergent. Since

an =
1√
n− 1

>
1√
n

= bn for n ≥ 2

we get that the given series id divergent by Comparison test.

2.5.2 The Limit Comparison Test

Theorem 29. The Limit Comparison Test
Suppose that

∑
an and

∑
bn are series with positive terms and

lim
n→∞

an
bn

= L

where L is a positive number. Then either both series converge or

both diverge.

Proof. Since lim
n→∞

an
bn

= L > 0, there exists an integer N such
that n ≥ N implies that∣∣∣∣anbn − L

∣∣∣∣ < 1

2
L =⇒ 1

2
L <

an
bn

<
3

2
L OR

1

2
Lbn < an <

3

2
Lbn

If
∑
bn converges, so does

∑
3
2
Lbn. Therefore, the right side of

the last inequality implies that
∑
an converges by the Compari-
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son Test. On the other hand, if
∑
bn diverges, so does

∑
1
2
Lbn,

and the left side of the last inequality implies by the Comparison
Test that

∑
an diverges as well.

Example: Determine whether the series
∑∞

n=1

√
n+ln n
n2+1

converges
or diverges.
Solution: Note that n large,

√
n + ln n behaves like

√
n. We

can verify this by computing the derivatives of f(x) =
√
x and

g(x) = ln x:

f ′()x =
1

2
√
x

and g′(x) =
1

x

Observe that g′(x) approaches zero faster than f ′(x) approaches
zero, as x −→ ∞. This shows that

√
x grows faster than ln x.

Also, if n is large, n2 + 1 behaves like n2. Therefore,

an =

√
n+ ln n
n2 + 1

√
n

n2
=

1

n3/2
= bn

Next we compute,

lim
n→∞

an
bn

= lim
n→∞

n1/2 + ln n
n2 + 1

· n
3/2

1
= lim

n→∞

n2 + n3/2ln n
n2 + 1

= lim
n→∞

1 + ln n
n1/2

1 + 1
n2

The last equality is obtained by dividing the numerator and de-
nominator by n2. Now, note that by l’Hôpital’s Rule,

lim
x→∞

ln n
n1/2

= lim
x→∞

1
x

1
2
x−1/2

= lim
x→∞

2√
x

= 0
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This result also supports the observation made earlier that
√
x

grows faster than ln x. Using this, we see that

lim
n→∞

an
bn

= lim
n→∞

1 + ln n
n1/2

1 + 1
n2

= 1

Since
∑

1/n3/2 converges (as it is a p-series with p = 3
2
), the

given series converges, by the Limit Comparison Test.

2.6 Alternating Series

Theorem 30. The Alternating Series Test
If the alternating series

∞∑
n=1

(−1)n−1an = a1 − a2 + a3 − a4 + a5 − a6 + ... an > 0

satisfies the conditions

1. an+1 ≤ an for all n

2. lim
n→∞

an = 0

then the series converges.

Proof. Consider the subsequence {S2n} comprising the even terms
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Figure 2.2: Note that the terms of {Sn} oscillate in smaller and
smaller steps, and this suggests that lim

n→∞
Sn = S.

of the sequence of partial sums {Sn}. Now,

S2 = a1 − a2 ≥ 0 Since a1 ≥ a2

S4 = S2 + (a3 − a4) ≥ S2 Since a3 ≥ a4

.

.

S2n+2 = S2n + (a2n+1 − a2n+2) ≥ S2n Since a2n+1 ≥ a2n+2

Thus, we have that 0 ≤ S2 ≤ S4 ≤ ... ≤ S2n ≤ .... That is, {S2n}
is increasing. Note that we can write S2n as

S2n = a1 − (a2 − a3)− (a4 − a5)− ...− (a2n−2 − a2n−1)− a2n

where every expression within the parenthesis is nonnegative. Thus,
S2n ≤ a1 for all n. This shows that the sequence {S2n} is bounded
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above as well. Therefore, by the Monotone Convergence The-
orem for Sequences, the sequence {S2n} is convergent; that is,
there exists a number S such that lim

n→∞
S2n = S.

Now, consider the subsequence {S2n+1} comprising the even terms
of {Sn}. Since S2n+1 = S2n + a2n+1 and lim

n→∞
a2n+1 = 0 by as-

sumption, we have

lim
n→∞

S2n+1 = lim
n→∞

(S2n+1+a2n+1) = lim
n→∞

S2n+1+ lim
n→∞

a2n+1 = S

Since the subsequences {S2n} and {S2n+1} of the sequence of
partial sums {Sn} both converge to S, we have lim

n→∞
Sn = S, so

the series converges.

Example : Determine whether the series converges or diverges.

a.
∞∑
n=1

(−1)n
2n

4n− 1
b.

∞∑
n=1

(−1)n
3n

4n2 − 1

Solution: a. Here, an = 2n/(4n− 1). Now,

lim
n→∞

2n

4n− 1
=

1

2
6= 0

Observe that condition (2) of Alternating Series Test is not satis-
fied. In fact, note that the lim

n→∞
(−1)n 2n

4n−1
does not exist, and the

divergence of the series follows from the Divergence Test.
b. Here an = 3n/(4n2 − 1). Consider

f ′(x) =
(4x2 − 1)(3)− (3x)(8x)

(4x2 − 1)2
=
−12x2 − 3

(4x2 − 1)2
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Thus, condition (1) that is, an ≥ an+1 for all n for the Alter-
nating Series test is verified by showing that f(x) = 3x/(4x2−1)

is decreasing for x ≥ 0. Now, for condition (2).

lim
n→∞

an = lim
n→∞

3n

4n2 − 1
= lim

n→∞

3
n

4− 1
n2

= 0

Therefore, both conditions of the Alternating Series Test are sat-
isfied. We can conclude that the series is convergent.

Approximating the Sum of an Alternating Series by Sn

The sum of a convergent series can be approximated to any de-
gree of accuracy by its nth partial sum Sn, provided that n is
taken large enough. To measure the accuracy of the approxima-
tion, consider the quantity

Rn = S−Sn =
∞∑
k=1

ak =
n∑
k=1

ak =
∞∑

k=n+1

ak = an+1+an+2+an+3+...

called the remainder after n terms of the series
∑∞

n=1 ak. The
remainder measures the error incurred when S is approximated by
Sn.

Theorem 31. Error Estimate in Approximating an Alternating
Series
Suppose

∑∞
n=1(−1)n−1an is an alternating series satisfying

1. 0 ≤ an+1 ≤ an for all n

2. lim
n→∞

an = 0
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If S is the sum of the series, then

|Rn| = |S − Sn| ≤ an+1

In other words, the absolute value of the error incurred in approx-

imating S by Sn is no larger than an+1, the first term omitted.

Proof. We have

S − Sn =
∞∑
k=1

(−1)k−1ak −
n∑
k=1

(−1)k−1ak =
∞∑

k=n+1

(−1)k−1ak

= (−1)nan+1 + (−1)n+1an+2 + (−1)n+2an+3 + ...

= (−1)n(an+1 − an+2 + an+3 − ...)

Note that, since an+1 ≤ an for all n,

an+1 − an ≥ 0 for all n

and thus we have

|S − Sn| = an+1 − an+2 + an+3 − an+4 + an+5 − ...

= an+1 − (an+2 − an+3)− (an+4 − an+5)− ...

≤ an+1

Example: Show that the series
∑∞

n=1(−1)n 1
n!

is convergent, and
find its sum correct to three decimal places.
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Solution: Note that for all n,

an+1 =
1

(n+ 1)!
=

1

n!(n+ 1)
<

1

n!
= an and

lim
n→∞

an = lim
n→∞

1

n!
= 0

Thus, we conclude that the series converges by the Alternating
Series Test. Now to compute the sum consider the reminder term

|Rn| = |S − Sn| ≤ an+1 =
1

(n+ 1)!

We need |Rn| < 0.0005, which is satisfied if 1
(n+1)!

< 0.0005

or (n + 1)! > 1
0.0005

= 2000. The smallest positive integer that
satisfies the last inequality is n = 6. Hence, the required approx-
imation is

S ≈ S6 =
1

0!
− 1

1!
+

1

2!
− 1

3!
+

1

4!
− 1

5!
+

1

6!
≈ 0.368

2.7 Absolute Convergence; the Ratio and
Root Tests

2.7.1 Absolute Convergence

Definition 24. Absolutely Convergent Series
A series

∑
an is absolutely convergent if the series

∑
|an| is con-

vergent.
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Example: Show that the alternating harmonic series

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ ...

is not absolutely convergent.
Solution: Consider

∞∑
n=1

∣∣∣∣(−1)n−1

n

∣∣∣∣ =
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ ...

which is the divergent harmonic series. This shows that the series
is not absolutely convergent.

Definition 25. Conditionally Convergent Series
A series

∑
an is conditionally convergent if it is convergent but

not absolutely convergent.

Theorem 32. If a series
∑
an is absolutely convergent, then it is

convergent.

Proof. Using an absolute value property, we have −|an| ≤ an ≤
|an| and now adding |an| to both sides gives 0 ≤ an+|an| ≤ 2|an|.
Let bn = an + |an|. If

∑
an is absolutely convergent, then

∑
|an|

is convergent, which in turn implies, by Theorem part(a) of Prop-
erties of Convergent Series that

∑
2|an| is convergent. There-

fore,
∑
bn is convergent by the Comparison Test. Finally, since

an = bn− |an|, we see that
∑
an =

∑
bn−

∑
|an| is convergent

by Theorem part(b) of Properties of Convergent Series.
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2.7.2 Ratio Test

Theorem 33. The Ratio Test
Let
∑
an be a series with nonzero terms.

a. If lim
n→∞

∣∣∣an+1

an

∣∣∣ = L < 1, then
∑∞

n=1 an converges absolutely.

b. If lim
n→∞

∣∣∣an+1

an

∣∣∣ = L > 1, or lim
n→∞

∣∣∣an+1

an

∣∣∣ = ∞, then
∑∞

n=1 an

diverges.

c. If lim
n→∞

∣∣∣an+1

an

∣∣∣ = 1, the test is inconclusive, and another test

should be used.

Proof. Suppose that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1

Let r be any number such that 0 ≤ L < r < 1. Then there exists
an integer N such that∣∣∣∣an+1

an

∣∣∣∣ < r OR |an+1| < |an|r for n ≥ N

Letting n take on the values N,N + 1, N + 2, ..., successively, we
obtain

|aN+1| < |aN |r

|aN+2| < |aN+1|r < |aN |r2

|aN+3| < |aN+2|r < |aN |r3

.

.

In general, |aN+k| < |aN |rk for all k ≥ 1
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Observe that the series
∑∞

k=1 |aN |rk (series(1)) is a convergent
geometric series with 0 < r < 1 and each term of the series∑∞

k=1 |aN+k| (series(2)) is less than the corresponding term of the
geometric series (1). The Comparison Test then implies that series
(2) is convergent. Since convergence or divergence is unaffected
by the omission of a finite number of terms, we see that the series∑∞

n=1 |an| is also convergent.
b. Suppose that

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1

Let r be any number such that L > r > 1. Then there exists an
integer N such that∣∣∣∣an+1

an

∣∣∣∣ > r > 1 whenever n ≥ N

This implies that |an+1| < |an| when n ≥ N . Thus, lim
n→∞

an 6= 0,
and

∑
an is divergent by the Divergence Test.

c. Consider the series
∑∞

k=1 1/n and
∑∞

k=1 1/n2. For the first
series we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1

n+ 1
· n

1
= lim

n→∞

1

1 + 1
n

= 1

and for the second series,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1

(n+ 1)2
· n

2

1
= lim

n→∞

1

(1 + 1
n
)2

= 1

The first series is the divergent harmonic series, whereas the sec-
ond series is a convergent p-series with p = 2. Thus, if L = 1,
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the series may converge or diverge, and the Ratio Test is incon-
clusive.

Example: Determine whether the series
∑∞

n=1
n!
nn is convergent

or divergent.
Solution: Let an = n!/nn. Then,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+ 1)!

(n+ 1)n+1
· n

n

n!

= lim
n→∞

(n+ 1)n!

(n+ 1)(n+ 1)n
· n

n

n!

= lim
n→∞

(
n

n+ 1

)n
= lim

n→∞

1(
1 + 1

n

)n
=

1

lim
n→∞

(
1 + 1

n

)n =
1

e
< 1

Therefore, the series converges, by the Ratio Test.

2.7.3 The Root Test

Theorem 34. The Root Test
Let
∑∞

n=1 an be a series

a. If lim
n→∞

n
√
|an| = L < 1, then

∑∞
n=1 an converges absolutely.

b. If lim
n→∞

n
√
|an| = L > 1, or lim

n→∞
n
√
|an| = ∞ then

∑∞
n=1 an

diverges.

c. If lim
n→∞

n
√
|an| = 1,the test is inconclusive, and another test

should be used.

Example: Determine whether the series
∑∞

n=1(−1)n−1 2n+3

(n+1)n
is

absolutely convergent, conditionally convergent, or divergent.

82



Solution: We apply the Root Test with an = (−1)n−12n+3/(n +

1)n. We have

lim
n→∞

n
√
|an| = lim

n→∞
n

√
(−1)n−1

2n+3

(n+ 1)n
= lim

n→∞

∣∣∣∣ 2n+3

(n+ 1)n

∣∣∣∣1/n
= lim

n→∞

∣∣∣∣21+3/n

n+ 1

∣∣∣∣ = 0 < 1

Thus, the series is absolutely convergent.

2.7.4 Rearrangement of Series

Example: Consider the alternating harmonic series that converges
to ln 2

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ ... = ln2

If we rearrange the series so that every positive term is followed
by two negative terms, we obtain

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ ...

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ ...

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ ...

=
1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ ...

)
=

1

2
ln2

Thus, rearrangement of the alternating harmonic series has a
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sum that is one half that of the original series!

NOTE:

• Reimann proved that:
If x is any real number and

∑∞
n=1 an is conditionally con-

vergent, then there is a rearrangement of
∑∞

n=1 an that con-
verges to x.

Remark: Riemann’s result tells us that for conditionally
convergent series, we may not rearrange their terms, lest we
end up with a totally different series, that is, a series with a
different sum. In fact, for conditionally convergent series,
one can find rearrangements of the series that diverge to
infinity, diverge to minus infinity, or oscillate between any
two prescribed real numbers!

• Q: What kind of convergent series will have rearrange-
ments that converge to the same sum as the original se-
ries?

If
∑∞

n=1 an converges absolutely and
∑∞

n=1 bn is any rear-
rangement of

∑∞
n=1 an, then

∑∞
n=1 bn converges and

∑∞
n=1 an =∑∞

n=1 an.

• Since a convergent series with positive terms is absolutely
convergent, its terms can be written in any order, and the
resultant series will converge and have the same sum as the
original series.
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Example: Indicate the test(s) that you would use to determine
whether the series converges or diverges.

a.
∞∑
n=1

2n− 1

3n+ 1
b.

∞∑
n=1

[
2

3n
− 1

n(n+ 1)

]
c.

∞∑
n=1

(
1

n

)e
d.

∞∑
n=1

1

n
√
ln n

e.
∞∑
n=1

ln n
n2

f.
∞∑
n=1

√
n3 + 2

n4 + 3n2 + 1

g.
∞∑
n=1

(−1)n
√
n

n2 + 1
h.

∞∑
n=1

n

2n
i.
∞∑
n=1

sin n√
n3 + 1

Solution:
a. Since

lim
n→∞

an = lim
n→∞

2n− 1

3n− 1
=

2

3
6= 0

we use the Divergence Test.
b. The series is the difference of a geometric series and a tele-
scoping series, so we use the properties of these series to deter-
mine convergence.
c. Here, an =

(
1
n

)e
= 1

ne is a p-series, so we use the properties of
a p-series to study its convergence.
d.The function f(x) = 1

x
√
ln x

is continuous, positive, and de-
creasing on [3,∞) and is integrable, so we choose the Integral
Test.
e. Here,

an =
ln n
n2

<

√
n

n2
=

1

n3/2
= bn

and we use the Comparison Test with the test series
∑
bn.

f. an = (n3+2)1/2

n4+3n2+1
is positive and behaves like bn = (n3)1/2

n4 =
n3/2

n4 = 1
n5/2 for large values of n, so we use the Limit Comparison
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Test with test series
∑∞

n=1 1/n5/2.
g. This is an alternating series, and we use the Alternating Series
Test.
h. Here, an = n

2n
=
(
n1/n

2

)n
involves the nth power, so the Root

Test is a candidate.In fact, here lim
n→∞

n
√
|an| = lim

n→∞

n√n
2

= 1
2
< 1

and the series converges.
i. The series involves both positive and negative terms and is not
an alternating series, so we use the test for absolute convergence.
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Module 3

Power series, plane curves
and polar coordinates

3.1 Power series

Definition 26. Let x be a variable. A power series in x is a series

of the form

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + ....+ anx
n + ....

where the an’s are constants and are called the coefficients of the

series. More generally, a power series in (x − c), where c is a

constant, is a series of the form

∞∑
n=0

an(x−c)n = a0+a1(x−c)+a2(x−c)2+....+an(x−c)n+....

Notes :
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1. A power series in (x− c) is also called a power series centered
at c or a power series about c. Thus, a power series in x is just a
series centered at the origin.
2. To simplify the notation used for a power series, we have
adopted the convention that (x− c)0 = 1, even when x = c.

We can view a power series as a function f defined by the rule

f(x) =
∞∑
n=0

= an(x− c)n

The domain of f is the set of all x for which the power series
converges, and the range of f comprises the sums of the series
obtained by allowing x to take on all values in the domain of f . If
a function f is defined in this manner, we say that f is represented
by the power series f(x) =

∑∞
n=0 = an(x− c)n.

Example : Consider the power series

∞∑
n=0

xn = 1 + x+ x2 + ....+ xn + ....

Notice that this is a geometric series with common ratio x, we see
that it converges for −1 ≤ x ≤ 1. Thus, the power series is a rule
for a function f with interval (−1, 1) as its domain; that is,

f(x) =
∞∑
n=0

xn = 1 + x+ x2 + ....+ xn + ....

There is a simple formula for the sum of the geometric series,
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namely, 1/(1 − x). and we see that the function represented by
the series is the function

f(x) =
1

1− x
− 1 ≤ x ≤ 1

Even though the domain of the function g(x) = 1/(1 − x) is
the set of all real numbers except x = 1, the power series rep-
resents the function g(x) = 1/(1 − x) only in the interval of
convergence (−1, 1) of the series.

Theorem 35. (Convergence of a power series) Given a power

series
∑∞

n=0 an(x− c)n, exactly one of the following is true:

a. The series converges only at x = c.

b. The series converges for all x.

c. There is a number R > 0 such that the series converges for

|x− c| < R and diverges for |x− c| > R.

The number R referred in the theorem above is called the ra-
dius of convergence of the power series. The radius of conver-
gence is R = 0 in the case (a) and R = ∞ in the case (b). The
set of all values for which the power series converges is called the
interval of convergence of the power series. Thus, the theorem
tells us that the interval of convergence of a power series centered
at c is (a) just the single point c, (b) the interval (−∞,∞), or (c)
the interval (c−R, c+R) . But in the last case, the theorem does
not tell us whether the endpoints x = c−R and x = c+R are in-
cluded in the interval of convergence. To determine whether they
are included, we simply replace x in the power series by c − R

and c + R in succession and use a convergence test on the resul-
tant series.
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Example : Find the radius of convergence and the interval of
convergence of

∑∞
n=0 n!xn.

Solution : We can think of the given as
∑∞

n=0 un, where un =

n!xn. Applying the Ratio test, we have

lim
x→∞
|un+1

un
| = lim

n→∞
|(n+ 1)!xn+1

n!xn
| = lim

x→∞
(n+ 1)|x| =∞

whenever x 6= 0, and we conclude that the series diverges when-
ever x 6= 0. Therefore, the series converges only when x = 0, and
its radius of convergence is accordingly R = 0.

Example : Find the radius of convergence and the interval of
convergence of

∼∞n=0

(−1)nx2n

(2n)!

Solution : Applying ratio test

lim
nto∞
|(−1)n+1x2n+2

(2n+ 2)!
.

(2n)!

(−1)nx2n
| = lim

n→∞

x2

(2n+ 1)(2n+ 2)
= 0 < 1

for each fixed value of x, so by the Ratio Test, the given series
converges for all values of x. Therefore, the radius of conver-
gence of the series is R = ∞ , and its interval of convergence is
(−∞,∞).

Example : Find the radius of convergence and the interval of
convergence of

∞
lim
n=1

xn

n
.
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Solution : Let un = xn/n. Then

lim
n→∞

|un+1

un
| = lim

n→∞
| x

n+1

n+ 1
.
n

xn
| = lim

n→∞
(

n

n+ 1
)|x| = |x|

By the Ratio Test, the series converges if−1 < x < 1. Therefore,
the radius of convergence of the series is R = 1. To determine the
interval of convergence of the power series, we need to examine
the behavior of the series at the end-points x = −1 and x = 1.
Now, if x = −1, the series becomes

∞∑
n=0

(−1)n

n

which is the convergent alternating harmonic series, and we see
that x = −1 is in the interval of convergence of the power se-
ries. If x = 1, we obtain the harmonic series

∑∞
n=0 1/n which is

divergent, so x = 1 is not in the interval of convergence. We con-
clude that the interval of convergence of the given power series is
[−1, 1).

Theorem 36. (Differentiation and Integration of power series)

Suppose that the power series
∑∞

n=0 an(x − c)n has a radius of

convergence R > 0. Then the function f defined by

f(x) =
∞∑
n=0

an(x−c)n = a0+a1(x−c)+a2(x−c)2+....+an(x−c)n+....

for all x in (c−R, c+R) is both differentiable and integrable on

(c − R, c + R) . Moreover, the derivative of f and the indefinite

integral of f are
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a. f ′(x) = a1 = 2a2(x− c) + 3a3(x− c)2 + ... =
∑∞

n=1 nan(x−
c)n−1

b.
∫
f(x)dx = C + a0(x − c) + a1

(x−c)2
2

+ a2
(x−c)3

3
+ .... =∑∞

n=0
(x−c)n+1

n+1
+ C.

Notes
1. The series in parts (a) and (b) of above theorem have the same
radius of convergence, R, as the series

∑∞
n=0 an(x− c)n. But the

interval of convergence may change. More specifically, you may
lose convergence at the endpoints when you differentiate and gain
convergence there when you integrate.
2. Above theorem implies that a function that is represented by a
power series in an interval (c − R, c + R) is continuous on that
interval.

Example : Find a power series representation for ln(1 − x) on
(−1, 1).
Solution : We start with the equation

1

1− x
= 1 + x+ x2 + x3 + .... =

∞∑
n=0

xn |x| < 1

Integrating both sides of this equation with respect to x, we obtain∫
1

1− x
dx =

∫
(1 + x+ x2 + ...)dx

−ln(1− x) = x+
1

2
x2 =

1

3
x3 + ...+ C

To determine the value of C, we set x = 0 in this equation to
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obtain −ln1 = 0 = C. Using this value of C, we see that

ln(1− x) = −x− 1

2
x2 − 1

3
x3 − .... =

∞∑
n=1

xn

n
|x| < 1

Example : Find a power series representation for tan−1(x) by
integrating a power series representation of f(x) = 1/(1− x2.
Solution : Observe that we can obtain a power series representa-
tion of f by replacing x with −x2 in the equation

1

1− x
= 1 + x+ x2 + .... |x| < 1

Thus,

1

1 + x2
=

1

1− (−x2)
= 1 + (−x2) + (−x2)2 + (−x2)3......

= 1− x2 + x3 − x6 + ....

=
∞∑
n=0

(−1)nx2n

Since the geometric series converges for |x| < 1, we see that this
series converges for |−x2| < 1, that is, x2 < 1 or |x| < 1. Finally,
integrating this equation, we have

tan−1(x) =

∫
1

1 + x2
dx =

∫
(1− x2 + x4 − x6 + ....)dx

= C + x− x3

3
+
x5

5
− x7

7
+ .....

To find C, we use the condition tan−1(0) = 0 to obtain 0 = C.
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Therefore,

tan−1(x) = C + x− x3

3
+
x5

5
− x7

7
+ ..... =

∞∑
n=1

(−1)n
x2n+1

2n+ 1

3.2 Taylor and Maclaurin series

In the previous section we saw that every power series represents
a function whose domain is precisely the interval of convergence
of the series. We now look at the general problem of finding
power series representations for functions, specifically on what
form does the power series representation of the function f take?
(In other words, what does an look like?)

Theorem 37. (Taylor series of f at c) If f has a power series

representation at c, that is, if

f(x) =
∞∑
n=0

an(x− c)n |x− c| < R

then f (n)(c) exits for every positive integer n and

an =
f (n)(c)

n!

Thus,

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + ....
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A series of this form is called the Taylor series of the function
f at c. In the special case in which c = 0, the Taylor series
becomes

f(x) =
∞∑
n=0

f (n)(0)

n!
(x)n = f(0) + f ′(0)(x) +

f ′′(0)

2!
(x)2+

f ′′′(0)

3!
(x− 0)3 + ....

This series is just the Taylor series of f centered at the origin.
It is called the Maclaurin series of f .

Note : The above theorem states that if a function f has a power
series representation at c, then the (unique) series must be the
Taylor series at c. The converse is not necessarily true. Given a
function f with derivatives of all orders at c, we can compute the
Taylor coefficients of f at c,

f (n)(c)

n!
n = 0, 1, 2, ...

and, therefore, the Taylor series of f at c. But the series that
is obtained formally in this fashion need not represent f .

Example : Let f(x) = ex. Find the Maclaurin series of f , and
determine its radius of convergence.
Solution : The derivatives of f(x) = ex are f ′(x) = ex, f ′′(x) =

ex, and, in general, f (n)(x) = ex, where n ≥ 1. So

f (n)(0) = 1
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Therefore, the Maclaurin series of f is

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

1

n!
xn

To determine the radius of convergence of the power series, we
use the ratio test with un = xn/n!. Since

lim
n→∞

|un+1

un
| = lim

n→∞
| xn+1

(n+ 1)!
.
n!

xn
| = lim

n→∞

|x|
n+ 1

= 0

we conclude that the radius of convergence of the series is R =

∞.

Example : Find the Maclaurin series of f(x) = sinx, and de-
termine its interval of convergence.
Solution : To find the Maclaurin series of f(x) = sinx , we com-
pute the values of f and its derivatives at x = 0. We obtain
f(x) = sinx f(0) = 0

f ′(x) = cosx f ′(0) = 1

f ′′(x) = −sinx f ′′(0) = 0

f ′′′(x) = −cosx f ′′′(0) = −1

f (4)(x) = sinx f (4)(0) = 0

We need not go further, since it is clear that successive derivatives
of f follow this same pattern. Then, we obtain the Maclaurin se-
ries of f(x) = sinx:
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∞∑
n=0

f (n)(0)

n!
= f(0) + f ′(0)x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + .....

= x− x3

3!
+
x5

5!
− x7

7!
.....

=
∑
n=0

∞ (−1)n

(2n+ 1)!
x2n+1

To find the interval of convergence of the series, we use the Ratio
Test

lim
n→∞

|un+1

un
| = lim

n→∞
|(−1)n+1x2n+3

(2n+ 3)!
.

(2n+ 1)!

(−1)nx2n+1
|

= lim
n→∞

|x|2

(2n+ 2)(2n+ 3)
= 0

we conclude that the interval of convergence of the series is (−∞,∞).

Example : Find the Maclaurin series for f(x) = (1 + x)k, where
k is a real number.
Solution : We compute the values of f and its derivatives at x = 0,
obtaining
f(x) = (1 + x)k f(0) = 1

f ′(x) = k(1 + x)k−1 f ′(0) = k

f ′′(x) = k(k − 1)(1 + x)k−2 f ′′(0) = k(k − 1)

f ′′′(x) = k(k − 1)(k − 1)(1 + x)k−3 f ′′′(0) = k(k − 1)(k − 2)

Thus, we get
f (n)(x) = k(k − 1)....(k − n + 1)(1 + x)k−n f (n)(0) = k(k −
1)....(k − n+ 1)
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So the Maclaurin series of f(x) = (1 + x)k is

∞∑
n=0

f (n)(0)

n!
xn = f(0) + f ′(0)x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + ....

= 1 + kx+
k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + .....

=
∞∑
n=0

k(k − 1)....(k − n+ 1)

n!
xn

Observe that if k is a positive integer, then the series is infinite (by
the Binomial Theorem), and so it converges for all x. If k is not a
positive integer, then we use the Ratio Test to find the interval of
convergence.

lim
n→∞

|un+1

un
| = lim

n→∞
|k(k − 1)(k − 2)....(k − n+ 1)(k − n)xn+1

(n+ 1)!
×

n!

k(k − 1)(k − 2)....(k − n+ 1)
|

= lim
n→∞

|k − n|
n+ 1

|x|

= lim
n→∞

| k
n
− 1|

n+ 1
n

|x|

= |x|

and we see that the series converges for x in the interval (−1, 1).

The series in example above is called the binomial series.

Definition 27. (Binomial series) If k is any real number and
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|x| < 1, then

(1+x)k = 1+kx+
k(k − 1)

2!
x2+

k(k − 1)(k − 2)

3!
x3+.... =

∞∑
n=0

(
k

n

)
xn

Notes :
1. The coefficients in the binomial series are referred to as bino-
mial coefficients and are denoted by(

k

n

)
=
k(k − 1)...(k − n+ 1)

n!
n ≥ 1,

(
k

0

)
= 1

2. If k is a positive integer and n > k, then the binomial coef-
ficient contains a factor (k − k), so

(
k
n

)
= 0 for n > k. The

binomial series reduces to a polynomial of degree k:

(1 + x)k =
k∑

n=0

(
k

n

)
xn

In other words, the expression (1 + x)k can be represented by a
finite sum if k is a positive integer and by an infinite series if k is
not a positive integer. Thus, we can view the binomial series as
an extension of the Binomial Theorem to the case in which k is
not a positive integer.
3. Even though the binomial series always converges for −1 <

x < 1, its convergence at the endpoints x = −1 or x = 1 depends
on the value of k. It can be shown that the series converges at
x = 1 if −1 < k < 0 and at both endpoints x = ±1 if k ≥ 0.

Techniques for Finding Taylor Series We have already seen how
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to find Taylor series of any function using the equation described
above. But it is often easier to find the series by algebraic manip-
ulation, differentiation, or integration of some well-known series.
We now elaborate further on such techniques. First, we list some
common functions and their power series representations.

Example : Find the Taylor series representation of f(x) = 1
1+x

at x = 2.
Solution : We first rewrite f(x) so that it includes the expression
(x− 2) . Thus,

f(x) =
1

1 + x
=

1

3 + (x− 2)
=

1

3[1 + (x−2
3

)]
=

1

3
.

1

1 + (x−2
3

)

Then, using Formula in table above with x replaced by −(x −
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2)/3, we obtain

f(x) =
1

3
[

1

1− (−(x−2
3

))
]

=
1

3
[1 + (−(

x− 2

3
)) + (−(

x− 2

3
))2 + (−(

x− 2

3
))3 + ....

=
1

3
[1− (

x− 2

3
) + (

x− 2

3
)2 − (

x− 2

3
)3 + ....]

=
1

3
=

1

32
(x− 2) +

1

33
(x− 2)2 − 1

34
(x− 2)3 + ....

=
∞∑
n=0

(−1)b
(x− 2)n

3n+1

The series converges for |(x − 2)/3| < 1, that is, |x − 2| < 3 or
−1 < x < 5.

Example : Find the Taylor series for f(x) = sinx at x = π/6.
Solution : We write

f(x) = sinx = sin[(x− π

6
) +

π

6
]

= sin(x− π

6
)cos(

π

6
) + cos(x− π

6
)sin(

π

6
)

=

√
3

2
sin(x− π

6
) +

1

2
cos(x− π

6
)

Then using Formulas 3 and 4 with x − (π/6) in place of x, we
obtain

f(x) =

√
3

2

∞∑
n=0

(−1)n

(2n+ 1)!
(x− π

6
)2n+1 +

1

2

∞∑
n=0

(−1)n

(2n)!
(x− π

6
)2n

which converges for all x in (−∞,∞).
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The power series representations of certain functions can also be
found by adding, multiplying, or dividing the Maclaurin or Taylor
series of some familiar functions as the following examples show.

Example : Find the Maclaurin series representation for f(x) =

sinh(x).
Solution : We have

f(x) =
1

2(ex − e−x)
=

1

2
ex − 1

2
e−x

=
1

2
(1 + x+

x2

2!
) +

x3

3!
+ ....)− 1

2
(1− x+

x2

2!
)− x3

3!
+ ....)

= x+
x3

3!
+
x5

5!
+ ......

=
∞∑
n=0

x2n+1

(2n+ 1)!

Since the Maclaurin series of both ex and e−x converge for x in
(−∞,∞), we see that this representation of sinh(x) is also valid
for all values of x.

We can also use Taylor series to integrate functions whose anti
derivatives cannot be found in terms of elementary functions. Ex-
amples of such functions are e−x2 and sinx2. In particular, the use
of Taylor series enables us to obtain approximations to definite
integrals involving such functions, as illustrated in the following
example.

Example : Find
∫
e−x

2
dx.
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Example : Replacing x in Formula (2) in Table by −x2 gives

e−x
2

= 1− x2 +
x4

2!
− x6

3!
+ .... =

∞∑
n=0

(−1)n
x2n

n!

Integrating both sides of this equation with respect to x, we ob-
tain, ∫

e−x
2

dx =

∫
(1− x2 +

x4

2!
− x6

3!
+ ....)dx

= C + x− 1

3
x3 +

1

5.2!
x5 − 1

7.3!
x7 + ....

= C +
∞∑
n=0

(−1)n
1

(2n+ 1).n!
x2n+1

Since the power series representation of e−x2 converges for x in
(−∞,∞), this result is valid for all values of x.

3.3 Plane curves and Parametric equations

Why we use parametric equations :

Figure below gives a bird’s-eye view of a proposed training course
for a yacht. In Figure we have introduced an xy-coordinate sys-
tem in the plane to describe the position of the yacht. With respect
to this coordinate system the position of the yacht is given by the
point P (x, y), and the course itself is the graph of the rectangular
equation 4x4 − 4x2 + y2 = 0, which is called a lemniscate. But
representing the lemniscate in terms of a rectangular equation in
this instance has three major drawbacks.
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First, the equation does not define y explicitly as a function of
x or x as a function of y. You can also convince yourself that this
is not the graph of a function by applying the vertical and horizon-
tal line tests to the curve in the figure. Because of this, we cannot
make direct use of many of the results for functions. Second, the
equation does not tell us when the yacht is at a given point (x, y).
Third, the equation gives no inkling as to the direction of motion
of the yacht. To overcome these drawbacks when we consider
the motion of an object in the plane or plane curves that are not
graphs of functions, we turn to the following representation. If
(x, y) is a point on a curve in the xy-plane, we write

x = f(t) y = g(t)

where f and t are functions of an auxiliary variable t with (com-
mon) domain some interval I . These equations are called para-
metric equations, t is called a parameter, and the interval I is
called a parameter interval.
If we think of t on the closed interval [a, b] as representing time,
then we can interpret the parametric equations in terms of the mo-
tion of a particle as follows: At t = a the particle is at the initial
point (f(a), g(a)) of the curve or trajectory C. As t increases
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from t = a to t = b, the particle traverses the curve in a specific
direction called the orientation of the curve, eventually ending
up at the terminal point (f(b), g(b)) of the curve. (See Figure
below.)

Sketching curves defined by parametric equations

Definition 28. (Plane curve) A plane curve is a set C of ordered

pairs (x, y) defined by the parametric equations

x = f(t) and y = g(t)

where f and g are continuous functions on a parameter interval

I .

Example : Sketch the curves represented by
a. x =

√
t and y = t

b. x = t and y = t2

Solution : a. We eliminate the parameter t by squaring the first
equation to obtain x2 = t. Substituting this value of t into the
second equation, we obtain y = x2, which is an equation of a
parabola. But note that the first parametric equation implies that
t ≥ 0, so x ≥ 0. Therefore, the desired curve is the right portion
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of the parabola shown in Figure below. Finally, note that the pa-
rameter interval is [0,∞), and as t increases from 0, the desired
curve starts at the initial point (0, 0) and moves away from it along
the parabola.

b. Substituting the first equation into the second yields y = x2.
Although the rectangular equation is the same as that in part (a),
the curve described by the parametric equations here is different
from that of part (a), as we will now see. In this instance the
parameter interval is (−∞,∞). Furthermore, as t increases from
−∞ to ∞ , the curve runs along the parabola y = x2 from left
to right, as you can see by plotting the points corresponding to,
say, t = −1, 0, and 1. You can also see this by examining the
parametric equation x = t, which tells us that x increases as t
increases. (See Figure below.)

Example : Describe the curve represented by

x = 4cosθ and y = 3sinθ 0 ≤ θ ≤ 2π
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Solution : Solving the first equation for cosθ and the second
equation for sinθ gives

cosθ =
x

4

and
sinθ =

y

3

Squaring each equation and adding the resulting equations, we
obtain

cos2θ + sin2θ = (
x

4
)2 + (

y

3
)2

Since cos2θ+sin2θ = 1, we end up with the rectangular equations

x2

16
+
y2

9
= 1

From this we see that the curve is contained in an ellipse centered
at the origin. If θ = 0, then x = 4 and y = 0, giving (4, 0) as the
initial point of the curve. As θ increases from 0 to 2π, the elliptical
curve is traced out in a counterclockwise direction, terminating at
(4, 0). (See Figure below.)
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3.4 The calculus of Parametric equations

Tangent line to curves defined by parametric equation

Suppose that C is a smooth curve that is parametrized by the
equations x = f(t) and y = g(t) with parameter interval I and
we wish to find the slope of the tangent line to the curve at the
point P . (See Figure below.) Let t0 be the point in I that corre-
sponds to P , and let (a, b) be the subinterval of I containing t0
corresponding to the highlighted portion of the curve C in the fig-
ure. This subset of C is the graph of a function of x, as you can
verify using the Vertical Line Test.
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Let’s denote this function by F so that y = F (x), where f(a) <

x < f(b). Since x = f(t) and y = g(t), we may rewrite this
equation in the form

g(t) = F [f(t)]

Using the Chain Rule, we obtain

g′(t) = F ′[f(t)]f ′(t)

= F ′(x)f ′(t)

If f ′(t) 6= 0, we can solve for F ′(x), obtaining

F ′(x) =
g′(t)

f ′(x)

which we can write as

dy

dx
=

dy
dt
dx
dt

if
dx

dt
6= 0

Horizontal and vertical Tangents

110



A curve C represented by the parametric equations x = f(t)

and y = g(t) has a horizontal tangent at a point (x, y) on C

where dy/dt = 0 and dx/dt 6= 0 and a vertical tangent where
dx/dt = 0 and dy/dt 6= 0, so that dy/dx is undefined there.
Points where both dy/dt and dx/dt are equal to zero are candi-
dates for horizontal or vertical tangents and may be investigated
by using l’Hopital’s rule.

Example : A curve C is defined by the parametric equations
x = t2 and y = t3 − 3t

a. Find the points on C where the tangent lines are horizontal or
vertical.
b. Find the x- and y-intercepts of C.
Solution :a. Setting dy/dt = 0 gives 3t2 − 3 = 0, or t = ±1.
Since dx/dt = 2t 6= 0 at these values of t, we conclude that C has
horizontal tangents at the points on C corresponding to t = ±1

, that is, at (1,−2) and (1, 2). Next, setting dx/dt = 0 gives
2t = 0, or t = 0. Since dy/dt 6= 0 for this value of t, we conclude
that C has a vertical tangent at the point corresponding to t = 0,
or at (0, 0).
b. To find the x-intercepts, we set y = 0, which gives t3 − 3t =

t(t2 − 3) = 0, or t = −
√

3, 0, and
√

3. Substituting these values
of t into the expression for x gives 0 and 3 as the x-intercepts.
Next, setting x = 0 gives t = 0, which, when substituted into the
expression for y, gives 0 as the y-intercept.

Finding d2y
dx2

from parametric equations
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Suppose that the parametric equations x = f(t) and y = g(t)

define y as a twice-differentiable function of x over some suitable
interval. Then d2y/dx2 may be found from Equation of dy/dx
with another application of the Chain Rule.

d2y

dx2
=

d

dx
(
dy

dx
) =

d
dt

( dy
dx

)
dx
dt

if
dx

dt
6= 0

Higher-order derivatives are found in a similar manner.

The length of a smooth curve

Theorem 38. (Length of a smooth curve) Let C be a smooth

curve represented by the parametric equations x = f(t) and y =

g(t) with parameter interval [a, b]. If C does not intersect itself,

except possibly for t = a and t = b, then the length of C is

L =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2dt =

∫ b

a

√
(
dx

dt
)2 + (

dy

dt
)2dt

The area of a surface of revolution

Theorem 39. (Area of surface of revolution) Let C be a smooth

curve represented by the parametric equations x = f(t) and y =

g(t) with parameter interval [a, b], and suppose that C does not

intersect itself, except possibly for t = a and t = b. If g(t) ≥ 0 for

all t in [a, b], then the area S of the surface obtained by revolving

C about the x-axis is

S = 2π

∫ b

a

y
√

[f ′(t)]2 + [g′(t)]2 = 2π

∫ b

a

y

√
(
dx

dt
)2 + (

dy

dt
)2dt
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If f(t) ≥ 0 for all t in [a, b], then the area S of the surface

that is obtained by revolving C about the y-axis is

S = 2π

∫ b

a

x
√

[f ′(t)]2 + [g′(t)]2 = 2π

∫ b

a

x

√
(
dx

dt
)2 + (

dy

dt
)2dt

3.5 Polar coordinates

The polar coordinate system : To construct the polar coordinate
system, we fix a point O called the pole (or origin) and draw a
ray (half-line) emanating from O called the polar axis. Suppose
that P is any point in the plane, let r denote the distance from
O to P , and let θ denote the angle (in degrees or radians) be-
tween the polar axis and the line segment OP . Then the point
P is represented by the ordered pair (r, θ), also written P (r, θ),
where the numbers r and θ are called the polar coordinates of
P . The angular coordinate θ is positive if it is measured in the
counterclockwise direction from the polar axis and negative if it
is measured in the clockwise direction. The radial coordinate r
may assume positive as well as negative values. If r > 0, then
P (r, θ) is on the terminal side of θ and at a distance r from the
origin. If r < 0, then P (r, θ) lies on the ray that is opposite the
terminal side of θ and at a distance of |r| = −r from the pole.
Also, by convention the pole O is represented by the ordered pair
(0, θ) for any value of θ. Finally, a plane that is endowed with a
polar coordinate system is referred to as an rθ-plane.
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Note : Unlike the representation of points in the rectangular sys-
tem, the representation of points using polar coordinates is not
unique. For example, the point (r, θ) can also be written as (r, θ+

2nπ) or (−r, θ + (2n+ 1)π), where n is any integer.

Relationship between Polar and Rectangular coordinates

Suppose that a point P (other than the origin) has representation
(r, θ) in polar coordinates and (x, y) in rectangular coordinates.
Then

x = rcosθ and y = rsinθ

r2 = x2 + y2 and thanθ =
y

x
if x 6= 0

Example : The point (−1, 1) is given in rectangular coordinates.
Find its representation in polar coordinates.
Solution : Here, x = −1 and y = 1, Then, we have

r2 = x2 + y2 = (−1)2 + 12 = 2
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and
tanθ =

y

x
= −1

Let’s choose r to be positive; that is, r =
√

2. Next, observe that
the point (−1, 1) lies in the second quadrant and so we choose
θ = 3π/4 (other choices are θ = (3π/4) ± 2nπ, where n is
an integer). Therefore, one representation of the given point is
(
√

2, 3π
4

).

Graphs of polar equations

The graph of a polar equation r = f(θ) or, more generally, F (r, θ) =

0 is the set of all points (r, θ) whose coordinates satisfy the equa-
tion.

Example : Sketch the graphs of the polar equations, and reconcile
your results by finding the corresponding rectangular equations.
a. r = 2

b. θ = 2π
3

Solution : a. The graph of r = 2 consists of all points P (r, θ)

where r = 2 and θ can assume any value. Since r gives the dis-
tance between P and the pole O, we see that the graph consists of
all points that are located a distance of 2 units from the pole; in
other words, the graph of r = 2 is the circle of radius 2 centered at
the pole.(See Figure (a) below.) To find the corresponding rectan-
gular equation, square both sides of the given equation obtaining
r2 = 4. Then, we have r2 = x2 + y2, and this gives the desired
equation x2 + y2 = 4. Since this is a rectangular equation of a
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circle with center at the origin and radius 2, the result obtained
earlier has been confirmed.

b. The graph of θ = 2π/3 consists of all points P (r, θ) where
u = 2π/3 and r can assume any value. Since θ measures the
angle the line segment OP makes with the polar axis, we see that
the graph consists of all points that are located on the straight line
passing through the pole O and making an angle of 2π/3 radians
with the polar axis.(See Figure (b) above.) Observe that the half-
line in the second quadrant consists of points for which r > 0,
whereas the half-line in the fourth quadrant consists of points for
which r < 0. To find the corresponding rectangular equation, we
use the equation, tanθ = y/x, to obtain

tan
2π

3
=
y

x
or

y

x
= −
√

3

or y = −
√

3x. This equation confirms that the graph of θ = 2π/3

is a straight line with slope −
√

3.

Symmetry
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Test for Symmetry
a. The graph of r = f(θ) is symmetric with respect to the polar
axis if the equation is unchanged when θ is replaced by −θ.
b. The graph of r = f(θ) is symmetric with respect to the vertical
line
theta = π/2 if the equation is unchanged when θ is replaced by
π − θ.
c. The graph of r = f(θ) is symmetric with respect to the pole if
the equation is unchanged when r is replaced by −r or when θ is
replaced by θ − π.

Tangent lines to graph of polar equations

To find the slope of the tangent line to the graph of r = f(θ)

at the point P (r, θ), let P (x, y) be the rectangular representation
of P . Then

x = rcosθ = f(θ)cosθ

y = rsinθ = f(θ)sinθ

We can view these equations as parametric equations for the graph
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of r = f(θ) with parameter θ. Then, we have

dy

dx
=

dy
dθ
dx
dθ

=
dy
dθ
sinθ + rcosθ

dr
dθ
cosθ − rsinθ

if
dx

dθ
6= 0

and this gives the slope of the tangent line to the graph of r = f(θ)

at any point P (r, θ).

The horizontal tangent lines to the graph of r = f(θ) are lo-
cated at the points where dy/dθ = 0 and dx/dθ 6= 0. The verti-
cal tangent lines are located at the points where dx/dθ = 0 and
dy/dθ 6= 0 (so that dy/dx is undefined). Also, points where both
dy/dθ and dx/dθ are equal to zero are candidates for horizontal
or vertical tangent lines, respectively, and may be investigated us-
ing l’Hopital’s Rule.

Example : Find the tangent lines of r = cos2θ at the origin.
Solution : Setting f(θ) = cos2θ = 0, we find that

2θ =
π

2
,
3π

2
,
5π

2
, or

7π

2

or
θ =

π

4
,
3π

4
,
5π

4
, or

7π

4

Next, we compute f ′(θ) = −2sin2θ. Since f ′(θ) 6= 0 for each
of these values of θ, we see that θ = π/4 and θ = 3π/4 (that is,
y = x and y = −x) are tangent lines to the graph of r = cos2θ at
the pole.
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3.6 Areas and Arc lengths in Polar coor-
dinates

Areas in Polar coordinates

Theorem 40. (Area bounded by a Polar curve) Let f be a con-

tinuous, nonnegative function on [α, β] where 0 ≤ β − α < 2π.

Then the area A of the region bounded by the graphs of r = f(θ),

θ = α, and θ = β is given by

A =

∫ β

α

1

2
[f(θ)]2dθ =

∫ β

α

1

2
r2dθ

Note : When you determine the limits of integration, keep in mind
that the region R is swept out in a counterclockwise direction by
the ray emanating from the origin, starting at the angle α and ter-
minating at the angle β.

Example : Find the area of the region enclosed by the cardioid
r = 1 + cosθ.
Solution :

The graph of the cardioid r = 1 + cosθ is shown in the figure
above. Observe that the ray emanating from the origin sweeps
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out the required region exactly once as θ increases from 0 to 2π.
Therefore, the required area A is

A =

∫ 2π

0

1

2
r2dθ =

∫ 2π

0

1

2
(1 + cosθ)2dθ

=
1

2

∫ 2π

0

(1 + 2cosθ + cos2θ)dθ

=
1

2

∫ 2π

0

(1 + 2cosθ +
1 + cos2θ

2
)dθ

=
1

2

∫ 2π

0

(
3

2
+ 2cosθ +

1

2
cos2θ)dθ

=
1

2
[
3

2
+ 2sinθ +

1

4
sin2θ]2π0 =

3

2
π

Area bounded by two graphs

Theorem 41. (Area bounded by two polar curves) Let f and g

be continuous on [α, β], where 0 ≤ g(θ) ≤ f(θ) and 0 ≤ β −
α < 2π. Then the area A of the region bounded by the graphs of

r = g(θ) , r = f(θ) , θ = α, and θ = β is given by

A =
1

2

∫ β

α

([f(θ)]2 − [g(θ)]2)dθ

Example : Find the area of the region that lies outside the circle
r = 3 and inside the cardioid r = 2 + 2cosθ.
Solution :
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We first sketch the circle r = 3 and the cardioid r = 2 + 2cosθ.
The required region is shown shaded in the figure above. To find
the points of intersection of the two curves, we solve the two equa-
tions simultaneously. We have 2 + 2cosθ = 3 or cosθ = 1/2 ,
which gives θ = ±π/3. Since the region of interest is swept out
by the ray emanating from the origin as θ varies from −π/3 to
π/3, we see that the required area is,

A =
1

2

∫ β

α

([f(θ)]2 − [g(θ)]2)dθ

where f(θ) = 2 + 2cosθ = 2(1 + cosθ), g(θ) = 3, α = −π/3,
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and β = π/3. If we take advantage of symmetry, we can write

A = 2(
1

2

∫ π/3

0

([2(1 + cosθ)]2 − 32)dθ

=

∫ π/3

0

(4 + 8cosθ + 4cos2θ − 9)dθ

=

∫ π/3

0

(−5 + 8cosθ + 4.
1 + cos2θ

2
)dθ

=

∫ π/3

0

(−3 + 8cosθ + 2cos2θ)dθ

= [−3θ + 8sinθ + sin2θ]
π/3
0

= (−π + 8(

√
3

2
) +

√
3

2
)

=
9
√

3

2
− π

Arc length in polar coordinates

Theorem 42. (Arc length) Let f be a function with a continuous

derivative on an interval [α, β]. If the graph C of r = f(θ) is

traced exactly once as θ increases from α to β, then the length L

of C is given by

L =

∫ β

α

√
[f ′(θ)]2 + [f(θ)]2dθ =

∫ β

α

√
(
dr

dθ
)2 + r2dθ

Area of surface of revolution

Theorem 43. (Area of Surface of revolution)Let f be a function

with a continuous derivative on an interval [α, β]. If the graph

C of r = f(θ) is traced exactly once as θ increases from α to

β, then the area of the surface obtained by revolving C about the
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indicated line is given by

a.S = 2π
∫ β
α
rsinθ

√
(dr
dθ

)2 + r2dθ (about the polar axis)

b.S = 2π
∫ β
α
rcosθ

√
(dr
dθ

)2 + r2dθ (about the lie θ = π/2)

Points of intersection of graphs in polar coordinates

In a previous example we were able to find the points of inter-
section of two curves with representations in polar coordinates by
solving a system of two equations simultaneously. This is not al-
ways the case. Consider for example, the graphs of the cardioid
r = 1 + cosθ and the circle r = 3cosθ shown in figure below.

Solving the two equations simultaneously, we obtain

3cosθ = 1 + cosθ

cosθ =
1

2

or θ = π/3 and 5π/3. Therefore, the point of intersection are
(3/2, π/3) and (3/2, 5π/3). But one glance at the figure shows
the pole as a third point of intersection that is not revealed in our
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calculation. To see how this can happen, think of the cardioid as
being traced by the point (r, θ) satisfying

r = f(θ) = 1 + cosθ 0 ≤ θ ≤ 2π

with θ as a parameter. If we think of θ as representing time, then
as θ runs from θ = 0 through θ = 2π, the point (r, θ) starts at
(2, 0) and traverses the cardioid in a counter-clockwise direction,
eventually returning to the point (2, 0). Similarly, the circle is
traced twice in the counterclockwise direction, by the point (r, θ),
where

r = g(θ) = 3cosθ 0 ≤ θ ≤ 2π

and the parameter θ, once again representing time, runs from θ =

0 through θ = 2π.

Observe that the point tracing the cardioid arrives at the point
(3/2, π/3) on the cardioid at precisely the same time the point
tracing the circle arrives at the point (3/2, π/3) on the circle. A
similar observation holds at the point (3/2, 5π/3) on each of the
two curves. These are the points of intersection found earlier.

Next, observe that the point tracing the cardioid arrives at the
origin when θ = π. But the point tracing the circle first arrives at
the origin when θ = π/2 and then again when u = 3π/2. In other
words, these two points arrive at the origin at different times, so
there is no (common) value of θ corresponding to the origin that
satisfies both equations simultaneously. Thus, although the origin
is a point of intersection of the two curves, this fact will not show
up in the solution of the system of equations. For this reason it is
recommended that we sketch the graphs of polar equations when
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finding their points of intersection.

Example : Find the points of intersection of r = cosθ and r =

cos2θ.
Solution : We solve the system of equations

r = cosθ

r = cos2θ

We set cosθ = cos2θ and use the identity cos2θ = 2cos2θ − 1.
We obtain

2cos2θ − cosθ = 0

(2cosθ + 1)(cosθ − 1) = 0

So
cosθ = −1

2
or cosθ = 1

that is,
θ =

2π

3
,
4π

3
, or 0
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These values of θ give (−1/2, 2π/3), (−1/2, 4π/3), and (1, 0) as
the points of interaction. Since both graphs also pass through the
pole, we conclude that the pole is also a point of intersection.
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Module 4

Geometry of Space and
Vector-valued function

4.1 Equations of Lines in Space

Definition 29. (Parametric equation of line) The parametric equa-

tions of the line passing through the point P0(x0, y0, z0) and par-

allel to the vector v = (a, b, c) are

x = x0 + at, y = y0 + bt, and z = z0 + ct

Example : Find parametric equations for the line passing through
the point P0(−2, 1, 3) and parallel to the vector v = 〈1, 2,−2〉.
Solution : Using the above equation with x0 = −2, y0 = 1,
z0 = 3, a = 1, b = 2, and c = −2 , we obtain
x = −2 + t, y = 1 = 2t, and z = 3− 2t

Suppose that the vector v = 〈a, b, c〉 defines the direction of a line
L. Then the numbers a, b, and c are called the direction numbers
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of L. Observe that if a line L is described by a set of paramet-
ric equations, then the direction numbers of L are precisely the
coefficients of t in each of the parametric equations.

There is another way of describing a line in space.

Definition 30. (Symmetric equations of a Line) The symmetric
equations of the line L passing through the point P0(x0, y0, z0)

and parallel to the vector v = 〈a, b, c〉 are

x− x0

a
=
y − y0

b
=
z − z0

c

Note: Suppose a = 0 and both b and c are not equal to zero, then
the parametric equations of the line take the form
x = x0, y = y0 + bt, and z = z0 + ct

and the line lies in the plane x = x0 (parallel to the yz-plane).
Solving the second and third equations for t leads to

x = x0,
y − y0

b
=
z − z0

c

which are the symmetric equations of the line.

Example : a. Find parametric equations and symmetric equa-
tions for the line L passing through the points P (−3, 3,−2) and
Q(2,−1, 4).
b. At what point does L intersect the xy-plane?
Solution : a. The direction of L is the same as that of the vector
~PQ = 〈5,−4, 6〉. Since L passes through P (−3, 3,−2) , we can

use a = 5, b = −4, c = 6, x0 = −3, y0 = 3, and z0 = −2, to
obtain the parametric equations
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x = −3 + 5t, y = 3− 4t, and z = −2 + 6t

Thus, we obtain the following symmetric equations for L:

x+ 3

5
=
y − 3

−4
=
z + 2

6

b. At the point where the line intersects the xy-plane, we have
z = 0. So setting z = 0 in the third parametric equation, we ob-
tain t = 1/3. Substituting this value of t into the other parametric
equations gives the required point as (−4/3, 5/3.0).

Equations of Planes in space:

A plane in space is uniquely determined by specifying a point
P0(x0, y0, z0) lying in the plane and a vector n =〈a, b, c〉 that is
normal (perpendicular) to it. (See the figure below)

Definition 31. (The standard form of the equations of a plane)

The standard form of the equation of a plane containing the point

P0(x0, y0, z0) and having the normal vector n = 〈a, b, c〉 is

a(x− x0) + b(y − y0) + c(z − z0) = 0

By expanding the equation above and regrouping the terms,
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we obtain the general form of the equation of a plane in space,

ax+ by + cz = d

where d = ax0 + by0 + cz0. Conversely, given ax+ by + cz = d

with a, b, and c not all equal to zero, we can choose numbers
x0, y0, and z0 such that ax0 + by0 + cz0 = d.

An equation of the form ax + by + cz = d, with a, b, and c
not all zero, is called linear equation in the three variables x, y,
and z.

Theorem 44. Every plane in space can be represented by a linear

equation ax + by + cz = d, where a, b, and c are not all equal

to zero. Conversely, every linear equation ax + by + cz = d

represents a plane in space having a normal vector 〈a, b, c〉.

Note: Notice that the coefficients of x, y, and z are precisely
the components of the normal vector n = 〈a, b, c〉. Thus, we can
write a normal vector to a plane by simply inspecting its equation.

Example : Find an equation of the plane containing the points
P (3,−1, 1), Q(1, 4, 2), and R(0, 1, 4).
Solution : We need to find a vector normal to the plane in ques-
tion. Observe that both of the vectors ~PQ = 〈−2, 5, 1〉 and
~PR = 〈−3, 2, 3〉 lie in the plane, so the vector ~PQ × ~PR is

normal to the plane. Denoting this vector by n, we have

n = ~PQ× ~PR =

∣∣∣∣∣∣∣
i j k
−2 5 1

−3 2 3

∣∣∣∣∣∣∣ = 13i + 3j + 11k
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Finally, using the point P (3,−1, 1) in the plane (any of the other
two points will also do) and the normal vector n just found, with
a = 13, b = 3, c = 11, x0 = 3, y0 = −1, and z0 = 1, gives

13(x− 3) + 3(y + 1) + 11(z − 1) = 0

or
13x+ 3y + 11z = 47

Parallel and orthogonal planes

Two planes with normal vectors m and n are parallel to each other
if m and n are parallel; the planes are orthogonal if m and n are
orthogonal.

Example : Find an equation of the plane containing P (2,−1, 3)

and parallel to the plane defined by 2x− 3y + 4z = 6.
Solution : The normal vector of the given plane is n = 〈2,−3, 4〉.
Since the required plane is parallel to the given plane, it also has
n as a normal vector. Therefore, we obtain

2(x− 2)− 3(y + 1) + 4(z − 3) = 0

or
2x− 3y + 4z = 19

as an equation of the plane.
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The angle between two plane

Two distinct planes in space are either parallel to each other or
intersect in a straight line. If they do intersect, then the angle
between the two planes is defined to be the acute angle between
their normal vectors.

Example : Find the angle between the two planes defined by
3x− y + 2z = 1 and 2x+ 3y − z = 4.
Solution : The normal vectors of these planes are
n1 = 〈3,−1, 2〉 and n2 = 〈2, 3,−1〉
Therefore, the angle θ between the planes is given by

cosθ =
n1.n2

|n1||n2|

=
〈3,−1, 2〉.〈2, 3,−1〉√
9 + 1 + 4

√
4 + 9 + 1

=
3(2) + (−1)(3) + 2(−1)√

14
√

14
=

1

14

or
θ = cos−1(

1

14
) ≈ 80◦

The distance between a point and a plane

Suppose that P1(x1, y1, z1) is a point not lying in the plane ax +

by + cz = d. Let P0(x0, y0, z0) be any point lying in the plane.
Then, the distance D between P1 and the plane is given by the
length of the vector projection of ~P0P1 onto the normal vector n
=〈a, b, c〉 of the plane. Equivalently, D is the absolute value of the
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scalar component of ~P0P1 along n. Thus, we obtain

D =
| ~P0P1.n|
|n|

But ~P0P1 = 〈x1 − x0, y1 − y0, z1 − z0〉. Substituting into above
equation and simplifying, we get

D =
|ax1 + by1 + cz1 − d|√

a2 + b2 + c2

4.2 Surfaces in space

In the previous section we saw that the graph of a linear equation
in three variables is a plane in space. In general, the graph of an
equation in three variables, F (x, y, z) = 0, is a surface in 3-space.
In this section we will study surfaces called cylinders and quadric
surfaces.

Traces

The trace of a surface S in a plane is the intersection of the surface
and the plane. In particular, the traces of S in the xy-plane, the
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yz-plane, and the xz-plane are called the xy-trace, the yz-trace
and the xz-trace, respectively. To find the xy-traces, we set z = 0

and sketch the graph of the resulting equation in the xy-plane.
The other traces are obtained in a similar manner. Of course, if
the surface does not intersect the plane, there is no trace in that
plane.

Cylinders

Definition 32. (Cylinder) Let C be a curve in a plane, and let

l be a line that is not parallel to that plane. Then the set of all

points generated by letting a line traverse C while parallel to l at

all times is called a cylinder. The curve C is called the directrix
of the cylinder, and each line through C parallel to l is called a

ruling of the cylinder.

Example : Sketch the graph of y = x2 − 4.
Solution : The given equation has the form f(x, y) = 0, where
f(x, y) = x2 − y − 4. Therefore, its graph is a cylinder with
directrix given by the graph of y = x2 − 4 in the xy-plane and
rulings parallel to the z-axis (corresponding to the variable miss-
ing in the equation). The graph of y = x2 − 4 in the xy-plane is
the parabola shown in Figure (a) below. The required cylinder is
shown in Figure (b). It is called a parabolic cylinder.
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Quadric surfaces

The graph of the second degree equation

Axx+By2 +Cz2 +Dxy+Exz+Fyz+Gx+Hy+ Iz+J = 0

where A,B,C, ..., J are constants, is called a quadric surface.

Ellipsoid : The graph of the equation

x2

a2
+
y2

b2
+
z2

c2
= 1

is an ellipsoid because its traces in the planes parallel to the co-
ordinate planes are ellipses. In fact, its trace in the plane z = k,
where −c < k < c, is the ellipse

x2

a2
+
y2

b2
= 1− k2

c2

and, in particular, its trace in the xy-plane is the ellipse

x2

a2
+
y2

b2
= 1
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Similarly, its traces in the planes x = k (−a < k < a) and
y = k(−b < k < b) are ellipses and, in particular, that its yz- and
xz-traces are the ellipses

y2

b2
+
z2

c2
= 1

and
x2

a2
+
z2

c2
= 1

respectively.

Hyperboloid of One sheet : The graph of the equation

x2

a2
+
y2

b2
− z2

c2
= 1

is a hyperboloid of one sheet. The xy-trace of this surface is the
ellipse

x2

a2
+
y2

b2
= 1

whereas both the yz- and xz-traces are hyperbolas. The trace of
the surface in the plane z = k is an ellipse

x2

a2
+
y2

b2
= 1 +

k2

c2
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As |k| increases, the ellipses grow larger and large. The z−axis
is called the axis of the hyperboloid. Note that the orientation of
the axis of the hyperboloid is associated with the term that has
a minus sign in front of it. Thus, if the minus sign had been in
front of the term involving x, then the surface would have been a
hyperboloid of one sheet with the x-axis as its axis.

Hyperboloid of Two sheets : The graph of the equation

−x
2

a2
− y2

b2
+
z2

c2
= 1

is a hyperboloid of two sheets. The xz- and yz-traces are the
hyperbolas

−x
2

a2
+
z2

c2
= 1

and
−y

2

b2
+
z2

c2
= 1

The trace of the surface in the plane z = k is an ellipse

x2

a2
+
y2

b2
=
k2

c2
− 1

provided that |k| > c. There are no values of x and y that satisfy
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the equation if |k| < c, so the surface is made up of two parts:
one part lying on or above the plane z = c and the other part
lying on or below the plane z = −c. The axis of the hyperboloid
is the z-axis. Observe that the sign associated with the variable z
is positive. Had the positive sign been in front of one of the other
variables, then the surface would have been a hyperboloid of two
sheets with its axis along the axis associated with that variable.

Cones : The graph of the equation

x2

a2
+
y2

b2
− z2

c2
= 0

is a double-napped cone. The xz- and yz-traces are the lines z =

±(c/a)x and z = ±(c/b)y , respectively. The trace in the plane
z = k is an ellipse,

x2

a2
+
y2

b2
=
k2

c2

As |k| increases, so do the lengths of the axes of the resulting
ellipses. The traces in planes parallel to the other two coordinate
planes are hyperbolas.
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Paraboloids : The graph of the equation

x2

a2
+
y2

b2
= cz

where c is a real number, is called an elliptic paraboloid because
its traces in planes parallel to the xy-coordinate plane are ellipses
and its traces in planes parallel to the other two coordinate planes
are parabolas. If a = b, the surface is called a circular paraboloid.
The graph of an elliptic paraboloid with c > 0 is sketched in
Figure (a) below. The axis of the paraboloid is the z-axis, and its
vertex is the origin.
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Hyperbolic paraboloid : The graph of the equation

x2

a2
− y2

b2
= cz

where c is a real number, is called a hyperbolic paraboloid be-
cause the xz- and yz-traces are parabolas and the traces in planes
parallel to the xy-plane are hyperbolas. The graph of a hyperbolic
paraboloid with c < 0 is shown in Figure (b) above.

4.3 Cylindrical and spherical coordinates
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The cylindrical coordinate system is just an extension of the po-
lar coordinate system in the plane to a three-dimensional system
in space obtained by adding the (perpendicular) z-axis to the sys-
tem. A point P in this system is represented by the ordered triple
(r, θ, z), where r and θ are the polar coordinates of the projection
of P onto the xy-plane and z is the directed distance from (r, θ, 0)

to P .

The relationship between rectangular coordinates and cylin-
drical coordinates can be seen by examining Figure. If P has
representation (x, y, z) in terms of rectangular coordinates, then
we have the following equations for converting cylindrical coor-
dinates to rectangular coordinates and vice versa.
Converting cylindrical to rectangular coordinates:

x = rcosθ y = rsinθ z = z

Converting rectangular to cylindrical coordinates:

r2 = x2 + y2 tanθ =
y

x
z = z

Example : The point (3, π/4, 3) is expressed in cylindrical
coordinates. Find its rectangular coordinates.
Solution : We are given that r = 3, θ = π/4, and z = 3. Using
the above equations, we have

x = rcosθ = 3cos
π

4
=

3
√

2

2

x = rsinθ = 3sin
π

4
=

3
√

2

2
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z = 3

Therefore, the rectangular coordinates of the given point are (3
√

2
2
, 3
√

2
2
, 3).

The spherical coordinate system

In the spherical coordinate system a point P is represented by an
ordered triple (ρ, θ, φ), where ρ is the distance between P and
the origin, θ is the same angle as the one used in the cylindrical
coordinate system, and φ is the angle between the positive z-axis
and the line segment OP . Note that the spherical coordinates
satisfy ρ ≥ 0 , 0 ≤ θ < 2π, and 0 ≤ φ ≤ π.

The relationship between rectangular coordinates and spher-
ical coordinates can be seen by examining the figure above. If
P has representation (x, y, z)in terms of rectangular coordinates,
then
x = rcosθ and y = rsinθ

Since r = ρsinφ and z = ρcosφ we have the following equa-
tions for converting spherical coordinates to rectangular coordi-
nates and vice versa.
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Converting spherical to rectangular coordinates

x = ρsinφcosθ y = ρsinφsinθ z = ρcosφ

Converting rectangular to spherical coordinates

ρ2 = x2 + y2 + z2 tanθ =
y

x
cosφ =

z

ρ

Example : Find an equation in spherical coordinates for the paraboloid
with rectangular equation 4z = x2 + y2.
Solution : Using the above equations, we obtain

4ρcosφ = ρ2sin2φcos2θ + ρ2sin2φsin2θ

= ρ2sin2φ(cos2θ + sin2θ)

= ρ2sin2φ

or
ρsin2φ = 4cosφ

4.4 Vector-valued functions and space curves

Definition 33. (Vector function) A vector-valued function, or

vector function, is a function r defined by

r(t) = f(t)i + g(t)j + h(t)k

where the component functions f, g, and h of r are real-valued

functions of the parameter t lying in a parameter interval I.

Example : Find the domain (parameter interval) of the vector
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function
r(t) = 〈1

t
,
√
t− 1, lnt〉

The component functions of r are f(t) = 1/t, g(t) =
√
t− 1,

and h(t) = lnt. Observe that f is defined for all values of t except
t = 0, g is defined for all t ≥ 1, and h is defined for all t > 0.
Therefore; f, g, and h are all defined if t ≥ 1, and we conclude
that the domain of r is [1,∞).

Curves defined by vector functions

A plane or space curve is the curve traced out by the terminal
point of r(t) of a vector function r as t takes on all values in a
parameter interval.

Example : Sketch the curve defined by the vector function

r(t) = 〈3cost,−2sint〉 0 ≤ t ≤ 2π

Solution : The parametric equations for the curve are
x = 3cost and y = −2sint Solving the first equation for cost and
the second equation for sint and using the identity cos2t+sin2t =

1, we obtain the rectangular equation

x2

9
+
y2

4
= 1

The curve described by this equation is the ellipse shown in Fig-
ure below. As t increases from 0 to 2π, the terminal point of r
traces the ellipse in a clockwise direction.
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Example : Sketch the curve defined by the vector function

r(t) = 2costi + 2sintj + tk 0 ≤ t ≤ 2π

Solution : The parametric equations for the curve are

x = 2cost y = 2sint z = t

From the first two equations we obtain

(
x

2
)2 + (

y

2
)2 = cos2t+ sin2t = 1 or x2 + y2 = 4

This says that the curve lies on the right circular cylinder of ra-
dius 2, whose axis is the z-axis. At t = 0 , r(0) = 2i, and this
gives (2, 0, 0) as the starting point of the curve. Since z = t,
the z-coordinate of the point on the curve increases (linearly) as
t increases, and the curve spirals upward around the cylinder in
a counterclockwise direction, terminating at the point (2, 0, 2π)

[r(2π) = 2i + 2πk]. The curve, called a helix.
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Limits and continuity

Definition 34. (The limit of a Vector function) Let r be a function

defined by r(t) = f(t)i + g(t)j + h(t)k. Then

lim
t→a

r(t) = [lim
t→a

f(t)]i + [lim
t→a

g(t)]j + [lim
t→a

h(t)]k

provided that the limits of the component functions exist.

Example : Find limt→0 r(t), where r(t) =
√
t+ 2i + tcos2tj +

e−tk.
Solution :

lim
t→0

= [lim
t→0

√
t+ 2]i + [lim

t→0
icos2t]j + [lim

t→0
e−t]k

=
√

2i + k

Definition 35. (Continuity of a vector function) A vector func-

tion r is continuous at a if

lim
t→a

r(t) = r(a)
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A vector function r is continuous on an interval I if it is continu-

ous at every number in I .

Example : Find the interval(s) on which the vector function r
defined by

r(t) =
√
ti + (

1

t2 − 1
)j + lntk

is continuous.
Solution : The component functions of r are f(t) =

√
t, g(t) =

1/(t2 − 1) , and h(t) = lnt. Observe that f is continuous for
t ≥ 0, g is continuous for all values of t except t = ±1, and h is
continuous for t > 0. Therefore, r is continuous on the intervals
(0, 1) and (1,∞).

4.5 Differentiation and integration of vector-
valued functions

The derivative of a vector function

Definition 36. (Derivative of a vector function) The derivative of

a vector function r is the vector function r’ defined by

r′(t) =
dr

dt
= lim

h→0

r(t+ h)− r(t)

h

provided that the limit exists.

The derivative r’ of the vector r at P may be interpreted as the
tangent vector to the curve defined by r at the point P , provided
that r’(t) 6= 0. If we divide r’(t) by its length, we obtain the unit
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tangent vector

T(t) =
r′(t)

|r′(t)|
which has unit length and the direction of r’.

Theorem 45. (Differentiation of Vector functions) Let r(t) =

f(t)i+g(t)j+h(t)k, where f, g, and h are differentiable functions

of t. Then

r′(t) = f ′(t)i + g′(t)j + h′(t)k

Proof. We compute
r′(t)

= lim
∆t→0

r(t+ δt)− r(t)

∆t

= lim
∆t→0

[
f(t+ ∆t)i + g(t+ ∆t)j + h(t+ ∆t)k

∆t

− [f(t)i + g(t)j + h(t)k]

∆t
]

= lim
∆t→0

[
f(t+ ∆t)− f(t)

∆t
i +

g(t+ ∆t)− g(t)

∆t
j +

h(t+ ∆t)− h(t)

∆t
k]

= [ lim
∆t→0

f(t+ ∆t)− f(t)

∆t
]i + [ lim

∆t→0

g(t+ ∆t)− g(t)

∆t
]j

+ [ lim
∆t→0

h(t+ ∆t)− h(t)

∆t
]k

= f ′(t)i + g′(t)j + h′(t)k

Example : a. Find the derivative of r(t) = (t2 + 1)i + e−tj −
sin2tk.
b. Find the point of tangency and the unit tangent vector at the
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point on the curve corresponding to t = 0.
Solution : Using the theorem above, we get

r′(t) = 2ti− e−tj− 2cos2tk

b. Since r(0) = i+ j, we see that the point of tangency is (1, 1, 0).
Next, since r′(0) = −j − 2k, we find the unit tangent vector at
(1, 1, 0) to be

T(0) =
r′(0)

|r′(0)|
=
−j− 2k√

1 + 4
= − 1√

5
j− 2√

5
k

Example : Find parametric equations for the tangent line to the
helix with parametric equations

x = 3cost y = 2sint z = t

at the point where t = π/6.
Solution : The vector function that describes the helix is

r(t) = 3costi + 2sintj + tk

The tangent vector at any point on the helix is

r′(t) = −3sinti + 2costj + k

In particular, the tangent vector at the point (3
√

3
2
, 1, π

6
), where

t = π/6, is

r′(
π

6
) = −3

2
i +
√

3j + k

Finally, we the observe that the required tangent line passes
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through the point (3
√

3
2
, 1, π

6
) and has the same direction that the

as required the tangent vector line r′(π/6). Thus, the parametric
equations of this line are

x =
3
√

3

2
− 3

2
t, y = 1 +

√
3t, and z =

π

6
+ t

Higher order derivatives

Higher-order derivatives of vector functions are obtained by suc-
cessive differentiation of the lower-order derivatives of the func-
tion. For example, the second derivative of r(t) is

r′′(t) =
d

dt
r′(t) = f ′′(t)i + g′′(t)j + h′′(t)k

Rules of differentiation

Theorem 46. (Rules of differentiation) Suppose thatu and v are

differentiable vector functions, f is a differentiable real-valued

function, and c is a scalar. Then

Example : Suppose that v is a differentiable vector function of
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constant length c. Show that v.v′ = 0. In other words, the vector
v and its tangent vector v’ must be orthogonal.
Solution : The condition on v implies that

v.v = |v|2 = c2

Differentiating both sides of this equation with respect to t, we
obtain

d

dt
(v.v) = v.v′ + v′.v =

d

dt
(c2) = 0

But v′.v = v.v′, so we have

2v.v′ = 0 or v.v′ = 0

Integration of vector functions

Theorem 47. (Integration of vector functions) Let r(t) = f(t)i+

g(t)j + h(t)k, where f, g and h are integrable. Then

1. The indefinite integral of r with respect to t is∫
r(t)dt = [

∫
f(t)dt]i + [

∫
g(t)dt]j + [

∫
h(t)dt]k

2. The definite integral of r over the interval [a, b] is∫ b

a

r(t)dt = [

∫ b

a

f(t)dt]i + [

∫ b

a

g(t)dt]j + [

∫ b

a

h(t)dt]k

Example : Find the antiderivative of r′(t) = costi + e−tj +
√
tk

satisfying the initial condition r(0) = i + 2j + 3k.
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Solution : We have

r(t) =

∫
r′(t)dt

=

∫
(costi + e−tj + t1/2k)dt

= sinti− e−tj +
2

3
t3/2k + C

where C is a constant (vector) of integration. To determine C, we
use the condition r(0) = i + 2j + 3k to obtain

r(0) = C = i + 2j + 3k

Therefore,

r(t) = (1 + sint)i + (3− e−t)j + (3 +
2

3
t3/2)k

4.6 Arc length and curvature

Arc length

We saw that the length of the plane curve given by the parametric
equations x = f(t) and y = g(t), where a ≤ t ≤ b, is

L =

∫ b

a

√
(
dx

dt
)2 + (

dy

dt
)2dt =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2dt
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Now, suppose that C is described by the vector function r(t) =

f(t)i + g(t)j instead. Then

r′(t) = f ′(t)i + g′(t)j

and
|r′(t)| =

√
[f ′(t)]2 + [g′(t)]2

from which we see that L can also be written in the form

L =

∫ b|r′|

a

(t)dt

Theorem 48. (Arc length of a space curve) Let C be a curve

given by the vector function

r(t) = f(t)i + g(t)j + h(t)k a ≤ t ≤ b

where f ′, g′, and h′ are continuous. If C is traversed exactly once

as t increases from a to b, then its length is given by

L =

∫ b

a

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2dt =

∫ b

a

|r′(t)|dt

Example : Find the length of the arc of the helix C given by the
vector function r(t) = 2costi + 2sintj + tk, where 0 ≤ t ≤ 2π.
Solution : We first compute

r′(t) = −2sinti + 2costj + k
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Then, the length of the arc is

L =

∫ 2π

0

|r′(t)|dt =

∫ 2π

0

√
4sin2t+ 4cos2t+ 1dt

=

∫ 2π

0

√
5dt = 2

√
5π

Smooth curve

A curve that is defined by a vector function r on a parameter in-
terval I is said to be smooth if r′(t) is continuous and r′(t) 6= 0

for all t in I with the possible exception of the endpoints. For
example, the plane curve defined by r(t) = t3i+ t2j is smooth ev-
erywhere except at the point (0, 0) corresponding to t = 0. To see
this, we compute r′(t) = 3t2i + 2tj and note that r′(0) = 0. The
point (0, 0) where the curve has a sharp corner is called a cusp.

Arc length parameter

The curve C described by the vector function r(t) with param-
eter t in some parameter interval I is said to be parametrized by t.
A curve C can have more than one parametrization. For example,
the helix represented by the vector function

r1(t) = 2costi + 3sintj + tk 2π ≤ t ≤ 4π

with parameter t is also represented by the function

r2(t) = 2coseui + 3sineuj + euk ln2π ≤ u ≤ ln4π
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with parameter u, where t and u are related by t = eu.
A useful parametrization of a curve C is obtained by using the

arc length of C as its parameter. To see how this is done, we need
the following definition.

Definition 37. (Arc length function) Suppose that C is a smooth

curve described by r(t) = f(t)i+g(t)j+h(t)k , where a ≤ t ≤ b.

Then the arc length function s is defined by

s(t) =

∫ t

a

|r′(u)|du

Differentiating s(t) with respect to t and using the Fundamen-
tal theorem of calculus, we obtain

ds

dt
= |r′(t)|

or, in differential form,

ds = |r′(t)|dt

The following example shows how to parametrize a curve in terms
of its arc length.

Example : Find the arc length function s(t) for the circle C in
the plane described by

r(t) = 2costi + 2sintj 0 ≤ t ≤ 2π

Then use the result to find a parametrization of C in terms of s.
Solution : We first compute r′(t) = −2sinti + 2costj, and then
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compute
|r′(t)| =

√
4sin2t+ 4cos2t = 2

Then,

s(t) =

∫ t

0

2du = 2t 0 ≤ t ≤ 2π

Writing s for s(t), we have s = 2t, where 0 ≤ t ≤ 2π, which
when solved for t, yields t = t(s) = s/2. Substituting this value
of t into the equation for r(t) gives

r(t(s)) = 2cos(
s

2
)i + 2sin(

s

2
)j

Finally, since s(0) = 0 and s(2π) = 4π, we see that the parameter
interval for this parametrization by the arc length s is [0, 4π].

Note : One reason for using the arc length of a curve C as the
parameter stems from the fact that its tangent vector r′(s) has unit
length; that is, r′(s) is a unit tangent vector. Consider the circle
of example above. Here,

r′(s) = −sin(
s

2
)i + cos(

s

2
)j

so

|r′(s)| =
√
sin2(

s

2
) + cos2(

s

2
) = 1

Curvature

Definition 38. (Curvature) Let C be a smooth curve defined by

r(s) , where s is the arc length of the parameter. Then the curva-
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ture of C at s is

κ(s) = |dT
ds
| = |T′(s)|

where T is the unit tangent vector.

Although the use of the arc length parameter s provides us
with a natural way for defining the curvature of a curve, it is gen-
erally easier to find the curvature in terms of the parameter t. Ap-
plying chain rule dT

dt
= dT

ds
ds
dt

Then

κ(s) = |dT
ds
| =
|dT
dt
|

|ds
dt
|

Since ds/dt = |r′(t)|, we are led to the following formula:

κ(t) =
|T′(t)|
|r′(t)|

Theorem 49. (Formula for finding curvature) LetC be a smooth

curve given by the vector function r. Then the curvature of C at

any point on C corresponding to t is given by

κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

Proof. We begin by recalling that

T(t) =
r′(t)

|r′(t)|

Since |r′(t)| = ds/dt, we have

r′(t) =
ds

dt
T(t)
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Differentiating both sides of this equation with respect to t

r′′(t) =
d2s

dt2
T(t) +

ds

dt
T′(t)

Next, we use the fact that T×T = 0 to obtain

r′(t)× r′′(t) = (
ds

dt
)2(T(t)×T′(t))

Also, |T(t)| = 1 for all t implies that T(t) and T′(t) are orthog-
onal.( as seen in the example in the previous section). Therefore,
we have

|r′(t)×r′′(t)| = (
ds

dt
)2|T(t)×T′(t)| = (

ds

dt
)2|T(t)||T′(t)| = (

ds

dt
)2|T′(t)|

Upon solving for |T′(t)|, we obtain

|T′(t)| = |r
′(t)× r′′(t)|

(ds
dt

)2
=
|r′(t)× r′′(t)|
|r′(t)|2

from which we deduce that

κ(t) =
|T′(t)|
r′(t)

=
|r′(t)× r′′(t)|
|r′(t)|3

Theorem 50. (Formula for the curvature of the graph of a func-
tion) If C is the graph of a twice differentiable function f , then

the curvature at the point (x, y) where y = f(x) is given by

κ(x) =
|f ′′(x)|

[1 + [f ′(x)]2]3/2
=

|y′′|
[1 + (y′)2]3/2
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Proof. Using x as the parameter, we can representC by the vector
function r(x) = xi+f(x)j+0k. Differentiating r(x) with respect
to x successively, we obtain

r′(x) = i + f ′(x)j + 0k and r′′(x) = 0i + f ′′(x)j + 0k

from which we obtain

r′(x)× r′′(x) =

∣∣∣∣∣∣∣
i j k

1 f ′(x) 0

0 f ′′(x) 0

∣∣∣∣∣∣∣ = f ′′(x)k

and
|r′(t)× r′′(x)| = |f ′′(x)|

Also,
|r′(x)| =

√
1 + [f ′(x)]2

Therefore,

κ(x) =
|r′(x)× r′′(x)|
|r′(x)|3

=
|f ′′(x)|

[1 + [f ′(x)]2]3/2

Radius of curvature

Suppose that C is a plane curve with curvature κ at the point P .
Then the reciprocal of the curvature, ρ = 1/κ, is called the radius
of curvature of C at P . The radius of curvature at any point P
on a curve C is the radius of the circle that best “fits” the curve at
that point. This circle, which lies on the concave side of the curve
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and shares a common tangent line with the curve at P , is called
the circle of curvature or osculating circle.

The center of the circle is called the center of curvature. As
an example, the curvature of the parabola y = 1/4x2 at the point
(0, 0) is found to be 1/2. Therefore, the radius of curvature of the
parabola at (0, 0) is ρ = 2. The circle of curvature is shown in the
figure below. Its equation is x2 + (y − 2)2 = 4.

4.7 Velocity and acceleration

Velocity, acceleration, and speed

Definition 39. (Velocity, acceleration, and speed) Let r(t) =

f(t)i + g(t)j + h(t)k be the position vector of an object. If f, g,

and h are twice differentiable functions of t, then the velocity vec-
tor v(t), acceleration vector a(t), and speed |v(t)| of the object

at time t are defined by

v(t) = r′(t) = f ′(t)i + g′(t)j + h′(t)k

a(t) = r′′(t) = f ′′(t)i + g′′(t)j + h′′(t)k
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|v(t)| = |r′(t)| =
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2

Example : The position of an object moving in a plane is given
by

r(t) = t2i + tj t ≥ 0

Find its velocity, acceleration, and speed when t = 2.
Solution : The velocity and acceleration vectors of the object are

v(t) = r′(t) = 2ti + j

and
a(t) = r′′(t) = 2i

Therefore, its velocity, acceleration, and speed when t = 2 are

v(2) = 4i + j

a(2) = 2i

and
|v(2)| =

√
16 + 1 =

√
17.

Motion of a particle

A projectile of mass m is fired from a height h with an initial
velocity v0 and an angle of elevation α. If we describe the posi-
tion of the projectile at any time t by the position vector r(t), then
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its initial position may be described by the vector

r(0) = hj

and its initial velocity by the vector

v(0) = v0 = (v0cosα)i + (v0sinα)j v0 = |v0|

If we assume that air resistance is negligible and that the only
external force acting on the projectile is due to gravity, then the
force acting on the projectile during its flight is

F = −mgj

where g is the acceleration due to gravity. By Newton’s Second
Law of Motion this force is equal to ma, where a is the accelera-
tion of the projectile. Therefore,

ma = −mgj
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giving the acceleration of the projectile as

a(t) = −gj

To find the velocity of the projectile at any time t, we integrate
the last equation with respect to t to obtain

v(t) =

∫
−gjdt = −gtj + C

Setting t = 0 and using the initial condition v(0) = v0, we obtain

v(0) = C = v0

Therefore, the velocity of the projectile at any time t is

v(t) = −gtj + v0

Integrating this equation then gives

r(t) =

∫
(−gtj + v0)dt =

1

2
gt2j + v0t+D

Setting t = 0 and using the initial condition r(0) = hj , we obtain

r(0) = D = hj

Therefore, the position of the projectile at any time t is

r(t) = −1

2
gt2j + v0t+ hj
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or
r(t) = −1

2
gt2j + [(v0cosα)i + (v0sinα)j]t+ hj

= (v0cosα)ti + [h+ (v0sinα)t− 1

2
gt2]j

4.8 Tangential and normal components of
acceleration

The unit normal

Suppose that C is a smooth space curve described by the vector
function r(t). Then,

T(t) =
r′(t)

|r′(t)|
r′(t) 6= 0

is the unit tangent vector to the curve C at the point correspond-
ing to t. Since |T(t)| = 1 for every t, then the vector T′(t) is
orthogonal to T(t)( as seen in an earlier example). Therefore, if
r′ is also smooth, we can normalize T′(t) to obtain a unit vector
that is orthogonal to T(t). This vector

N(t) =
T′(t)

|T′(t)|

is called the principal unit normal vector (or simply the unit
normal) to the curve C at the point corresponding to t.

164



Example : Let C be the helix defined by

r(t) = 2costi + 2sintj + tk t ≥ 0

Find T(t) and N(t).
Solution : Since

r′(t) = −2sinti + 2costj + k

and
|r′(t)| =

√
4sin2t+ 4cos2t+ 1 =

√
5

we have
T(t) =

1√
5

(−2sinti + 2costj + k)

Now, differentiating T

T′(t) = − 2√
5

(costi + sintj)

and
|T′(t)| = 2√

5

it follows that
N(t) = −(costi + sintj)

Tangential and normal components of acceleration

Let’s return to the study of the motion of an object moving along
the curve C described by the vector function r defined on the pa-
rameter interval I . Recall that the speed v of the object at any
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time t is v = |v(t)| = |r′(t)|. But

T =
r′(t)

|r′(t)|

so we can write

v(t) = r′(t) = |r′(t)|T = vT

which expresses the velocity of the object in terms of its speed
and direction.

The acceleration of the object at time t is

a = v′ =
d

dt
(vT) = v′T + vT′

To obtain an expression for T′, recall that

N =
T′

|T′|

so T′ = |T′|N . Now we need an expression for |T′|. But

κ =
|T′|
|r′|

where κ is the curvature of C. This gives

|T′| = κ|r′| = κv

so T′ = |T′|N = κvN.
Therefore,

a = v′T + κv2N)
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This result shows that the acceleration vector a can be re-
solved into the sum of two vectors—one along the tangential di-
rection and the other along the normal direction. The magnitude
of the acceleration along the tangential direction is called the tan-
gential scalar component of acceleration and is denoted by aT ,
whereas the magnitude of the acceleration along the normal di-
rection is called the normal scalar component of acceleration
and is denoted by aN . Thus,

a = aTT + aNN

where aT = v′ and aN = κv2.

The following theorem gives formulas for calculating aT and
aN directly from r and its derivatives.

Theorem 51. (Tangential and normal components of accelera-
tion) Let r(t) be the position vector of an object moving along a

smooth curve C. Then

a = aTT + aNN

where

aT =
r′(t).r′′(t)

|r′(t)|
and

aN =
r′(t)× r′′(t)

|r′(t)|
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Proof. If we take the dot product of v and a, we obtain

v.a = (vT).(v′T + κv2N)

= vv′T.T + κv3T.N

But T.T = |T|2 = 1, since T is a vector, and T.N = 0, since T

and N are orthogonal. Therefore,

v.a = vv′

or
aT = v′ =

v.a

v
=

r′(t).r′′(t)

|r′(t)|
Now,

aN = κv2 =
|r′(t)× r′′(t)|
|r′(t)|3

|r′(t)|2 =
|r′(t)× r′′(t)|
|r′(t)|

Example : A particle moves along a curve described by the vector
function r(t) = ti + t2j + t3k. Find the tangential scalar and
normal scalar components of acceleration of the particle at any
time t.
Solution : We begin by computing

r′(t) = i + 2tj + 3t2k

r′′(t) = 2j + 6tk
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Then,

aT =
r′(t).r′′(t)

|r′(t)|
=

4t+ 18t3√
1 + 4t2 + 9t4

Next, we compute

r′(t)× r′′(t) =

∣∣∣∣∣∣∣
i j k

1 2t 3t2

0 2 6t

∣∣∣∣∣∣∣ = 6t2i− 6tj + 2k

Then, we have

aT =
r′(t)× r′′(t)

|r′(t)|
=

√
36t4 + 36t2 + 4√
1 + 4t2 + 9t4

= 2

√
9t4 + 9t2 + 1

9t4 + 4t2 + 1
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